TY - JOUR
T1 - A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones
AU - Marenah, Lamin
AU - McCluskey, Jane T.
AU - Abdel-Wahab, Yasser H.A.
AU - O'Harte, Finbarr P.M.
AU - McClenaghan, Neville H.
AU - Flatt, Peter R.
PY - 2006/7/1
Y1 - 2006/7/1
N2 - Embryonic stem (ES) cells can be differentiated into insulin-producing cells by conditioning the culture media. However, the number of insulin-expressing cells and amount of insulin released is very low. Glucose-dependent insulinotropic polypeptide (GIP) enhances the growth and differentiation of pancreatic β-cells. This study examined the potential of the stable analogue GIP(LysPAL16) to enhance the differentiation of mouse ES cells into insulin-producing cells using a five-stage culturing strategy. Semi-quantitative PCR indicated mRNA expression of islet development markers (nestin, Pdx1, Nkx6.1, Oct4), mature pancreatic β-cell markers (insulin, glucagon, Glut2, Sur1, Kir6.1) and the GIP receptor gene GIP-R in undifferentiated (stage 1) cells, with increasing levels in differentiated stages 4 and 5. IAPP and somatostatin genes were only expressed in differentiated stages. Immunohistochemical studies confirmed the presence of insulin, glucagon, somatostatin and IAPP in differentiated ES cells. After supplementation with GIP(LysPAL16), ES cells at stage 4 released insulin in response to secretagogues and glucose in a concentration-dependent manner, with 35-100% increases in insulin release. Cellular C-peptide content also increased by 45% at stages 4 and 5. We conclude that the stable GIP analogue enhanced differentiation of mouse ES cells towards a phenotype expressing specific β-cell genes and releasing insulin.
AB - Embryonic stem (ES) cells can be differentiated into insulin-producing cells by conditioning the culture media. However, the number of insulin-expressing cells and amount of insulin released is very low. Glucose-dependent insulinotropic polypeptide (GIP) enhances the growth and differentiation of pancreatic β-cells. This study examined the potential of the stable analogue GIP(LysPAL16) to enhance the differentiation of mouse ES cells into insulin-producing cells using a five-stage culturing strategy. Semi-quantitative PCR indicated mRNA expression of islet development markers (nestin, Pdx1, Nkx6.1, Oct4), mature pancreatic β-cell markers (insulin, glucagon, Glut2, Sur1, Kir6.1) and the GIP receptor gene GIP-R in undifferentiated (stage 1) cells, with increasing levels in differentiated stages 4 and 5. IAPP and somatostatin genes were only expressed in differentiated stages. Immunohistochemical studies confirmed the presence of insulin, glucagon, somatostatin and IAPP in differentiated ES cells. After supplementation with GIP(LysPAL16), ES cells at stage 4 released insulin in response to secretagogues and glucose in a concentration-dependent manner, with 35-100% increases in insulin release. Cellular C-peptide content also increased by 45% at stages 4 and 5. We conclude that the stable GIP analogue enhanced differentiation of mouse ES cells towards a phenotype expressing specific β-cell genes and releasing insulin.
KW - Embryonic stem cells
KW - GIP
KW - Insulin-releasing cells
UR - http://www.scopus.com/inward/record.url?scp=33746192085&partnerID=8YFLogxK
U2 - 10.1515/BC.2006.118
DO - 10.1515/BC.2006.118
M3 - Article
C2 - 16913844
AN - SCOPUS:33746192085
SN - 1431-6730
VL - 387
SP - 941
EP - 947
JO - Biological Chemistry
JF - Biological Chemistry
IS - 7
ER -