TY - JOUR
T1 - A study of matrix and admixture elements in fluorine-rich ionic conductors by pulsed glow discharge mass spectrometry
AU - Chuchina, Victoria
AU - Gubal, Anna
AU - Lyalkin, Yegor
AU - Glumov, Oleg
AU - Trefilov, Ivan
AU - Sorokina, Angelina
AU - Savinov, Sergey
AU - Solovyev, Nikolay
AU - Ganeev, Alexander
N1 - Publisher Copyright:
© 2020 John Wiley & Sons, Ltd.
PY - 2020/6/15
Y1 - 2020/6/15
N2 - Rationale: Dopants in ionic conductors play a crucial role in achieving the required electrochemical properties. A slight variation in their concentration considerably affects the conductivity of crystals and their applicability as ionic conductors and laser materials. To ensure the growth of high-quality fluoride crystals, adequate approaches for the quantification of matrix and admixture/dopant components are required. Methods: A panel of SrF2- and GdF3-doped LaF3 single crystals was investigated. The electrical conductivity of the crystals was measured using impedance spectroscopy in the frequency range 100 Hz–1 MHz to control for crystal quality. Pulsed glow discharge mass spectrometry (GDMS) was used to simultaneously quantify fluorine, strontium, lanthanum, and gadolinium in the crystals. X-ray fluorescence, scanning electron microscopy–energy dispersive X–ray spectroscopy, and arc optical emission spectrometry were used for validation. Results: Quasiperiodic intensity drifts under sputtering of the ionic conductors were observed and attributed to F− redistribution on the sample surface, affecting surface conductivity and sputtering rate. Several sample preparation protocols were tested to address that effect. Full coating of the sample with a layer of silver several micrometers thick provided stable and effective sputtering. The parameters for the GDMS determination of F, Sr, La, and Gd were optimized. The elements' distribution was studied in different parts of the crystals. Conclusions: An analytical approach to the direct multi-element analysis of fluoride-containing ionic conductors using pulsed GDMS with La1−x−ySrxGdyF3−x as an example was designed and tested. Instability effects of ionic conductivity were explained and coped with, providing effective and stable sputtering.
AB - Rationale: Dopants in ionic conductors play a crucial role in achieving the required electrochemical properties. A slight variation in their concentration considerably affects the conductivity of crystals and their applicability as ionic conductors and laser materials. To ensure the growth of high-quality fluoride crystals, adequate approaches for the quantification of matrix and admixture/dopant components are required. Methods: A panel of SrF2- and GdF3-doped LaF3 single crystals was investigated. The electrical conductivity of the crystals was measured using impedance spectroscopy in the frequency range 100 Hz–1 MHz to control for crystal quality. Pulsed glow discharge mass spectrometry (GDMS) was used to simultaneously quantify fluorine, strontium, lanthanum, and gadolinium in the crystals. X-ray fluorescence, scanning electron microscopy–energy dispersive X–ray spectroscopy, and arc optical emission spectrometry were used for validation. Results: Quasiperiodic intensity drifts under sputtering of the ionic conductors were observed and attributed to F− redistribution on the sample surface, affecting surface conductivity and sputtering rate. Several sample preparation protocols were tested to address that effect. Full coating of the sample with a layer of silver several micrometers thick provided stable and effective sputtering. The parameters for the GDMS determination of F, Sr, La, and Gd were optimized. The elements' distribution was studied in different parts of the crystals. Conclusions: An analytical approach to the direct multi-element analysis of fluoride-containing ionic conductors using pulsed GDMS with La1−x−ySrxGdyF3−x as an example was designed and tested. Instability effects of ionic conductivity were explained and coped with, providing effective and stable sputtering.
UR - http://www.scopus.com/inward/record.url?scp=85085160448&partnerID=8YFLogxK
U2 - 10.1002/rcm.8786
DO - 10.1002/rcm.8786
M3 - Article
C2 - 32182379
AN - SCOPUS:85085160448
SN - 0951-4198
VL - 34
JO - Rapid Communications in Mass Spectrometry
JF - Rapid Communications in Mass Spectrometry
IS - 11
M1 - e8786
ER -