An in vitro assessment of the cerebral hemodynamics through three patient specific circle of willis geometries

Paul Fahy, Patrick Delassus, Peter McCarthy, Sheriff Sultan, Niamh Hynes, Liam Morris

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

The Circle of Willis (CoW) is a complex pentagonal network comprised of fourteen cerebral vessels located at the base of the brain. The collateral flow feature within the circle of Willis allows the ability to maintain cerebral perfusion of the brain. Unfortunately, this collateral flow feature can create undesirable flow impact locations due to anatomical variations within the CoW. The interaction between hemodynamic forces and the arterial wall are believed to be involved in the formation of cerebral aneurysms, especially at irregular geometries such as tortuous segments, bends, and bifurcations. The highest propensity of aneurysm formation is known to form at the anterior communicating artery (AcoA) and at the junctions of the internal carotid and posterior communicating arteries (PcoAs). Controversy still remains as to the existence of blood flow paths through the communicating arteries for a normal CoW. This paper experimentally describes the hemodynamic conditions through three thin walled patient specific models of a complete CoW based on medical images. These models were manufactured by a horizontal dip spin coating method and positioned within a custom made cerebral testing system that simulated symmetrical physiological afferent flow conditions through the internal carotid and vertebral arteries. The dip spin coating procedure produced excellent dimensional accuracy. There was an average of less than 4% variation in diameters and wall thicknesses throughout all manufactured CoW models. Our cerebral test facility demonstrated excellent cycle to cycle repeatability, with variations of less than 2% and 1% for the time and cycle averaged flow rates, respectively. The peak systolic flow rates had less than a 4% variation. Our flow visualizations showed four independent flow sources originating from all four inlet arteries impacting at and crossing the AcoA with bidirectional cross flows. The flow paths entering the left and right vertebral arteries dissipated throughout the CoW vasculature from the posterior to anterior sides, exiting through all efferent vessels. Two of the models had five flow impact locations, while the third model had an additional two impact locations within the posterior circulation caused by an additional bidirectional cross flows along the PcoAs during the accelerating and part of the decelerating phases. For a complete CoW, bidirectional cross flows exist within the AcoA and geometrical variations within the CoW geometry can either promote uni-or bidirectional cross flows along the PcoAs.

Original languageEnglish
Article number011007
JournalJournal of Biomechanical Engineering
Volume136
Issue number1
DOIs
Publication statusPublished - Jan 2014

Keywords

  • Circle of Willis
  • cerebral aneurysms
  • communicating arteries
  • cross flows
  • dip spin coating
  • flexible patient specific models
  • impact locations

Fingerprint

Dive into the research topics of 'An in vitro assessment of the cerebral hemodynamics through three patient specific circle of willis geometries'. Together they form a unique fingerprint.

Cite this