TY - JOUR
T1 - Antimicrobial Activities of Polyethylene Terephthalate-Waste-Derived Nanofibrous Membranes Decorated with Green Synthesized Ag Nanoparticles
AU - Soltanolzakerin-Sorkhabi, Tannaz
AU - Fallahi-Samberan, Mehrab
AU - Kumaravel, Vignesh
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/7
Y1 - 2023/7
N2 - Thermoplastic polymers are one of the synthetic materials produced with high tonnage in the world and are so omnipresent in industries and everyday life. One of the most important polymeric wastes is polyethylene terephthalate (PET), and the disposal of used PET bottles is an unsolved environmental problem, and many efforts have been made to find practical solutions to solve it. In this present work, nanofibrous membranes were produced from waste PET bottles using the electrospinning process. The surface of membranes was modified using NaOH and then decorated with green synthesized Ag nanoparticles (10 ± 2 nm) using an in situ chemical reduction method. The morphology, size, and diameter of the Ag nanoparticles decorating the nanofibers were characterized through transmission electron microscopy (TEM), a field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-visible spectroscopy techniques. Finally, the antimicrobial activity of the nanofibrous membranes was tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using disc diffusion and colony-forming count methods. The growth of bacteria was not affected by the pure nanofibrous membranes, while the Ag-decorated samples showed inhibition zones of 17 ± 1, 16 ± 1, and 14 ± 1 mm for Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, respectively. The planktonic culture results of Pseudomonas aeruginosa showed that the membranes had a relatively low inhibitory effect on its growth. The obtained results showed that Pseudomonas aeruginosa has a relatively low ability to form biofilms on the nanostructured membranes too. A good agreement was observed between the data of biofilm formation and the planktonic cultures of bacteria. The plastic-waste-derived PET/Ag nanocomposite membranes can be used for wound dressings, air filters, and water purification applications.
AB - Thermoplastic polymers are one of the synthetic materials produced with high tonnage in the world and are so omnipresent in industries and everyday life. One of the most important polymeric wastes is polyethylene terephthalate (PET), and the disposal of used PET bottles is an unsolved environmental problem, and many efforts have been made to find practical solutions to solve it. In this present work, nanofibrous membranes were produced from waste PET bottles using the electrospinning process. The surface of membranes was modified using NaOH and then decorated with green synthesized Ag nanoparticles (10 ± 2 nm) using an in situ chemical reduction method. The morphology, size, and diameter of the Ag nanoparticles decorating the nanofibers were characterized through transmission electron microscopy (TEM), a field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-visible spectroscopy techniques. Finally, the antimicrobial activity of the nanofibrous membranes was tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using disc diffusion and colony-forming count methods. The growth of bacteria was not affected by the pure nanofibrous membranes, while the Ag-decorated samples showed inhibition zones of 17 ± 1, 16 ± 1, and 14 ± 1 mm for Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, respectively. The planktonic culture results of Pseudomonas aeruginosa showed that the membranes had a relatively low inhibitory effect on its growth. The obtained results showed that Pseudomonas aeruginosa has a relatively low ability to form biofilms on the nanostructured membranes too. A good agreement was observed between the data of biofilm formation and the planktonic cultures of bacteria. The plastic-waste-derived PET/Ag nanocomposite membranes can be used for wound dressings, air filters, and water purification applications.
KW - antibacterial
KW - green synthesis
KW - membranes
KW - nanofibers
KW - waste recycling
UR - http://www.scopus.com/inward/record.url?scp=85165966964&partnerID=8YFLogxK
U2 - 10.3390/molecules28145439
DO - 10.3390/molecules28145439
M3 - Article
C2 - 37513311
AN - SCOPUS:85165966964
SN - 1420-3049
VL - 28
JO - Molecules
JF - Molecules
IS - 14
M1 - 5439
ER -