TY - GEN
T1 - Available wrench set for planar mobile cable-driven parallel robots
AU - Rasheed, Tahir
AU - Long, Philip
AU - Marquez-Gamez, David
AU - Caro, Stephane
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/9/10
Y1 - 2018/9/10
N2 - Cable-Driven Parallel Robots (CDPRs) have several advantages over conventional parallel manipulators most notably a large workspace. CDPRs whose workspace can be further increased by modification of the geometric architecture are known as Reconfigurable Cable Driven Parallel Robots(RCDPRs). A novel concept of RCDPRs, known as Mobile CDPR (MCDPR) that consists of a CDPR carried by multiple mobile bases, is studied in this paper. The system is capable of autonomously navigating to a desired location then deploying to a standard CDPR. In this paper, we analyze the Static equilibrium (SE) of the mobile bases when the system is fully deployed. In contrast to classical CDPRs we show that the workspace of the MCDPR depends, not only on the tension limits, but on the SE constraints as well. We demonstrate how to construct the Available Wrench Set (AWS) for a planar MCDPR wih a point-mass end-effector using both the convex hull and Hyperplane shifting methods. The obtained results are validated in simulation and on an experimental platform consisting of two mobile bases and a CDPR with four cables.
AB - Cable-Driven Parallel Robots (CDPRs) have several advantages over conventional parallel manipulators most notably a large workspace. CDPRs whose workspace can be further increased by modification of the geometric architecture are known as Reconfigurable Cable Driven Parallel Robots(RCDPRs). A novel concept of RCDPRs, known as Mobile CDPR (MCDPR) that consists of a CDPR carried by multiple mobile bases, is studied in this paper. The system is capable of autonomously navigating to a desired location then deploying to a standard CDPR. In this paper, we analyze the Static equilibrium (SE) of the mobile bases when the system is fully deployed. In contrast to classical CDPRs we show that the workspace of the MCDPR depends, not only on the tension limits, but on the SE constraints as well. We demonstrate how to construct the Available Wrench Set (AWS) for a planar MCDPR wih a point-mass end-effector using both the convex hull and Hyperplane shifting methods. The obtained results are validated in simulation and on an experimental platform consisting of two mobile bases and a CDPR with four cables.
UR - http://www.scopus.com/inward/record.url?scp=85057130336&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2018.8461199
DO - 10.1109/ICRA.2018.8461199
M3 - Conference contribution
AN - SCOPUS:85057130336
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 962
EP - 967
BT - 2018 IEEE International Conference on Robotics and Automation, ICRA 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 IEEE International Conference on Robotics and Automation, ICRA 2018
Y2 - 21 May 2018 through 25 May 2018
ER -