TY - JOUR
T1 - Biochar encapsulated metal nanoflowers for high efficient degradation of metronidazole via peroxymonosulfate activation
AU - Xu, Weicheng
AU - Liang, Jinzhi
AU - Li, Jianghong
AU - Pillai, Suresh C.
AU - Liang, Fawen
AU - Li, Meng
AU - Xiao, Kaibang
AU - Li, Jiesen
AU - Wang, Yu
AU - Jiang, Xueding
AU - Liu, Zhang
AU - Beiyuan, Jingzi
AU - Wang, Hailong
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2024/1/1
Y1 - 2024/1/1
N2 - A three-dimensional (3D) flower-like zero-valent bimetallic shell/core iron/copper/biochar composite (NZVI/Cu0/BC) was synthesized for the purpose of removing antibiotic metronidazole (MNZ) through the activation of peroxymonosulfate (PMS). Under optimal conditions, complete removal of MNZ (10 mg/L) was achieved within 6 min. The study quantitatively investigated the contribution of different participants in the complex system, including carbon composites, Fe and Cu species, and radicals and nonradicals. Based on the characterization and analysis data, possible activation mechanisms were proposed, which involved the oxygenated functional groups of BC and the bimetallic structure feature of NZVI/Cu0 accelerating the generation of 1O2 and other oxidation species. Additionally, the synergistic effect of Cu-Fe-BC facilitated the redox cycle of Cu2+/Cu+ and Fe3+/Fe2+, thereby promoting radical in the NZVI/Cu0/BC-3/PMS system. Notably, NZVI/Cu0/BC-3 has the advantages of wide pH usable range as well as broad-spectrum adaptability towards various organic pollutant and various water environments. Density functional theory (DFT) results indicated that the adsorption energy of PMS onto NZVI/Cu0/BC was more negative compared to their individual adsorption energies, and the O-O bond in the structure of PMS molecules became weaker after adsorption, resulting in improved efficiency of PMS activation. Liquid chromatograph combined with mass spectrometry (LC-MS) measurement and DFT calculation suggested three main degradation pathways of MNZ, and the toxicities of their intermediates were evaluated.
AB - A three-dimensional (3D) flower-like zero-valent bimetallic shell/core iron/copper/biochar composite (NZVI/Cu0/BC) was synthesized for the purpose of removing antibiotic metronidazole (MNZ) through the activation of peroxymonosulfate (PMS). Under optimal conditions, complete removal of MNZ (10 mg/L) was achieved within 6 min. The study quantitatively investigated the contribution of different participants in the complex system, including carbon composites, Fe and Cu species, and radicals and nonradicals. Based on the characterization and analysis data, possible activation mechanisms were proposed, which involved the oxygenated functional groups of BC and the bimetallic structure feature of NZVI/Cu0 accelerating the generation of 1O2 and other oxidation species. Additionally, the synergistic effect of Cu-Fe-BC facilitated the redox cycle of Cu2+/Cu+ and Fe3+/Fe2+, thereby promoting radical in the NZVI/Cu0/BC-3/PMS system. Notably, NZVI/Cu0/BC-3 has the advantages of wide pH usable range as well as broad-spectrum adaptability towards various organic pollutant and various water environments. Density functional theory (DFT) results indicated that the adsorption energy of PMS onto NZVI/Cu0/BC was more negative compared to their individual adsorption energies, and the O-O bond in the structure of PMS molecules became weaker after adsorption, resulting in improved efficiency of PMS activation. Liquid chromatograph combined with mass spectrometry (LC-MS) measurement and DFT calculation suggested three main degradation pathways of MNZ, and the toxicities of their intermediates were evaluated.
KW - Bimetallic NZVI/Cu
KW - Biochar
KW - Degradation mechanisms
KW - Metronidazole
KW - Peroxymonosulfate activation
UR - http://www.scopus.com/inward/record.url?scp=85171163713&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2023.125081
DO - 10.1016/j.seppur.2023.125081
M3 - Article
AN - SCOPUS:85171163713
SN - 1383-5866
VL - 328
JO - Separation and Purification Technology
JF - Separation and Purification Technology
M1 - 125081
ER -