TY - JOUR
T1 - Climate Change Trends in a European Coastal Metropolitan Area
T2 - Rainfall, Temperature, and Extreme Events (1864–2021)
AU - Espinosa, Luis Angel
AU - Portela, Maria Manuela
AU - Matos, José Pedro
AU - Gharbia, Salem
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/12
Y1 - 2022/12
N2 - This paper summarises an updated climate change trends analysis—developed for the period from 1 October 1864 to 30 September 2021 within the scope of a Horizon 2020-funded project to increase climate resilience in European coastal cities—for a representative site of the Lisbon Metropolitan Area (Portugal). By using long ground-based daily records of rainfall and surface temperature at the Lisboa-Geofísico climatological station, the analysis aimed to identify (i) long-term and recent climate trends in rainfall and temperature, (ii) changes in extreme rainfalls, heatwaves, and droughts, and (iii) possible effects of the coupled changes of minimum and maximum daily temperatures (Tmin and Tmax, respectively) on drought development based on the diurnal temperature range (DTR) indicator. To detect these trends and quantify their magnitude, the Mann−Kendall and Sen’s slope estimator tests were implemented. The analysis of the mean annual temperatures indicated that the study area has warmed ∼1.91 °C through the 157 analysed years. Results evidenced statistically significant upward trends in both Tmin and Tmax, and in the number of Tmax heatwave days. In what concerns the extreme hydrological events, the analysis of annual maximum rainfall series and peaks-over-threshold (POT) techniques showed more frequent and intense events in recent years, reaching up to ∼120.0 mm in a single day. With regard to drought, the study proved that the characterisation based on the commonly used standardised precipitation index (SPI) might differ from that based on the standardised precipitation evapotranspiration index (SPEI), as the latter can take into account not only rainfall but also temperature, an important trigger for the development of drought. According to the SPEI index, severe and extreme drought conditions have been more frequent in the last 60 years than in any other recorded period. Finally, a decreasing DTR trend towards the present was found to influence evapotranspiration rates and thus drought characteristics.
AB - This paper summarises an updated climate change trends analysis—developed for the period from 1 October 1864 to 30 September 2021 within the scope of a Horizon 2020-funded project to increase climate resilience in European coastal cities—for a representative site of the Lisbon Metropolitan Area (Portugal). By using long ground-based daily records of rainfall and surface temperature at the Lisboa-Geofísico climatological station, the analysis aimed to identify (i) long-term and recent climate trends in rainfall and temperature, (ii) changes in extreme rainfalls, heatwaves, and droughts, and (iii) possible effects of the coupled changes of minimum and maximum daily temperatures (Tmin and Tmax, respectively) on drought development based on the diurnal temperature range (DTR) indicator. To detect these trends and quantify their magnitude, the Mann−Kendall and Sen’s slope estimator tests were implemented. The analysis of the mean annual temperatures indicated that the study area has warmed ∼1.91 °C through the 157 analysed years. Results evidenced statistically significant upward trends in both Tmin and Tmax, and in the number of Tmax heatwave days. In what concerns the extreme hydrological events, the analysis of annual maximum rainfall series and peaks-over-threshold (POT) techniques showed more frequent and intense events in recent years, reaching up to ∼120.0 mm in a single day. With regard to drought, the study proved that the characterisation based on the commonly used standardised precipitation index (SPI) might differ from that based on the standardised precipitation evapotranspiration index (SPEI), as the latter can take into account not only rainfall but also temperature, an important trigger for the development of drought. According to the SPEI index, severe and extreme drought conditions have been more frequent in the last 60 years than in any other recorded period. Finally, a decreasing DTR trend towards the present was found to influence evapotranspiration rates and thus drought characteristics.
KW - Lisbon Metropolitan Area
KW - Portugal
KW - climate change
KW - climate trends
KW - diurnal temperature range
KW - drought
KW - extreme rainfall
KW - heatwaves
KW - peaks-over-threshold
KW - standardised precipitation evapotranspiration index
UR - http://www.scopus.com/inward/record.url?scp=85144604363&partnerID=8YFLogxK
U2 - 10.3390/atmos13121995
DO - 10.3390/atmos13121995
M3 - Article
AN - SCOPUS:85144604363
SN - 2073-4433
VL - 13
JO - Atmosphere
JF - Atmosphere
IS - 12
M1 - 1995
ER -