TY - JOUR
T1 - Column Study for Adsorption of Copper and Cadmium Using Activated Carbon Derived from Sewage Sludge
AU - Al-Mahbashi, Najib
AU - Kutty, S. R.M.
AU - Jagaba, A. H.
AU - Al-Nini, Ahmed
AU - Ali, Mujahid
AU - Saeed, A. A.H.
AU - Ghaleb, A. A.S.
AU - Rathnayake, Upaka
N1 - Publisher Copyright:
© 2022 Najib Al-mahbashi et al.
PY - 2022
Y1 - 2022
N2 - Among the water-polluting substances, heavy metals stand out due to their carcinogenic and toxic effects on the creatures and environment. This study aimed to scrutinize the effectiveness of sewage sludge-based activated carbon in the removal of copper and cadmium from aqueous solutions in column study. Detection of breakthrough curves and related parameters was conducted by varying bed depths (3, 6, and 9 cm). The solution with an initial metal concentration (IMC) of 100 ppm was pumped to the column at a flow rate of 2 mL/min. In the process of copper removal, the breakthrough points for depths 3 cm, 6 cm, and 9 cm were achieved at 10 min, 15 min, and 60 min, respectively, whereas breakthrough points of similar depths in cadmium removal process were achieved at 5 min, 10 min, and 30 min, respectively. Adsorption kinetics were analyzed using the Adams-Bohart, Yoon-Nelson, and Thomas kinetics models. The Adams-Bohart model described only the initial part of breakthrough curves. The Thomas model represented the adsorption process with coefficients of determination (R2) ranging between 0.90-0.95 for cadmium removal and 0.89-0.96 for copper removal, while the coefficients of determination of Yoon-Nelson ranged between 0.89-0.94 for cadmium and 0.95-0.97 for copper. Yoon-Nelson was fitted well with copper removal data, while removal of cadmium data was best described by the Thomas model. This study demonstrated that using sewage sludge-based activated carbon to remove heavy metals is an alternative, more cost-effective option to reach the objectives of sustainable development.
AB - Among the water-polluting substances, heavy metals stand out due to their carcinogenic and toxic effects on the creatures and environment. This study aimed to scrutinize the effectiveness of sewage sludge-based activated carbon in the removal of copper and cadmium from aqueous solutions in column study. Detection of breakthrough curves and related parameters was conducted by varying bed depths (3, 6, and 9 cm). The solution with an initial metal concentration (IMC) of 100 ppm was pumped to the column at a flow rate of 2 mL/min. In the process of copper removal, the breakthrough points for depths 3 cm, 6 cm, and 9 cm were achieved at 10 min, 15 min, and 60 min, respectively, whereas breakthrough points of similar depths in cadmium removal process were achieved at 5 min, 10 min, and 30 min, respectively. Adsorption kinetics were analyzed using the Adams-Bohart, Yoon-Nelson, and Thomas kinetics models. The Adams-Bohart model described only the initial part of breakthrough curves. The Thomas model represented the adsorption process with coefficients of determination (R2) ranging between 0.90-0.95 for cadmium removal and 0.89-0.96 for copper removal, while the coefficients of determination of Yoon-Nelson ranged between 0.89-0.94 for cadmium and 0.95-0.97 for copper. Yoon-Nelson was fitted well with copper removal data, while removal of cadmium data was best described by the Thomas model. This study demonstrated that using sewage sludge-based activated carbon to remove heavy metals is an alternative, more cost-effective option to reach the objectives of sustainable development.
UR - http://www.scopus.com/inward/record.url?scp=85128326469&partnerID=8YFLogxK
U2 - 10.1155/2022/3590462
DO - 10.1155/2022/3590462
M3 - Article
AN - SCOPUS:85128326469
SN - 1687-8086
VL - 2022
JO - Advances in Civil Engineering
JF - Advances in Civil Engineering
M1 - 3590462
ER -