TY - GEN
T1 - Contact-implicit trajectory optimization based on a variable smooth contact model and successive convexification
AU - Onol, Aykut Ozgun
AU - Long, Philip
AU - Padir, Taskin
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/5
Y1 - 2019/5
N2 - In this paper, we propose a contact-implicit trajectory optimization (CITO) method based on a variable smooth contact model (VSCM) and successive convexification (SCvx). The VSCM facilitates the convergence of gradient-based optimization without compromising physical fidelity. On the other hand, the proposed SCvx-based approach combines the advantages of direct and shooting methods for CITO. For evaluations, we consider non-prehensile manipulation tasks. The proposed method is compared to a version based on iterative linear quadratic regulator (iLQR) on a planar example. The results demonstrate that both methods can find physically-consistent motions that complete the tasks without a meaningful initial guess owing to the VSCM. The proposed SCvx-based method outperforms the iLQR-based method in terms of convergence, computation time, and the quality of motions found. Finally, the proposed SCvx-based method is tested on a standard robot platform and shown to perform efficiently for a real-world application.
AB - In this paper, we propose a contact-implicit trajectory optimization (CITO) method based on a variable smooth contact model (VSCM) and successive convexification (SCvx). The VSCM facilitates the convergence of gradient-based optimization without compromising physical fidelity. On the other hand, the proposed SCvx-based approach combines the advantages of direct and shooting methods for CITO. For evaluations, we consider non-prehensile manipulation tasks. The proposed method is compared to a version based on iterative linear quadratic regulator (iLQR) on a planar example. The results demonstrate that both methods can find physically-consistent motions that complete the tasks without a meaningful initial guess owing to the VSCM. The proposed SCvx-based method outperforms the iLQR-based method in terms of convergence, computation time, and the quality of motions found. Finally, the proposed SCvx-based method is tested on a standard robot platform and shown to perform efficiently for a real-world application.
UR - http://www.scopus.com/inward/record.url?scp=85071433571&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2019.8794250
DO - 10.1109/ICRA.2019.8794250
M3 - Conference contribution
AN - SCOPUS:85071433571
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 2447
EP - 2453
BT - 2019 International Conference on Robotics and Automation, ICRA 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 International Conference on Robotics and Automation, ICRA 2019
Y2 - 20 May 2019 through 24 May 2019
ER -