TY - JOUR
T1 - Elastic Modulus and Flatwise (Through-Thickness) Tensile Strength of Continuous Carbon Fibre Reinforced 3D Printed Polymer Composites
AU - Saeed, Khalid
AU - McIlhagger, Alistair
AU - Harkin-Jones, Eileen
AU - McGarrigle, Cormac
AU - Dixon, Dorian
AU - Archer, Edward
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - Additively manufactured composite specimens exhibit anisotropic properties, meaning that the elastic response changes with respect to orientation. Both in-plane and out-of-plane mechanical properties are important for designing purpose. Recent studies have characterised the in-plane performance. In this study, however, through-thickness tensile strength of 3D polymer composites were determined by printing of continuous carbon fibre reinforced thermoplastic polyamide-based composite, manufactured using a Markforged Two 3D printer. This paper discusses sample fabrication and geometry, adhesive used, and testing procedure. Test standards used to determine out-of-plane properties are tedious as most of the premature failures occur between the specimens and the tabs. Two types of samples were printed according to ASTM flatwise tension standard and the results were compared to determine the geometry effect on the interlaminar strength. This test method consists of subjecting the printed sample to a uniaxial tensile force normal to the plane. With this method, the acceptable failure modes for tensile strength must be internal to the structure, not between the sample and the end tabs. Micro-computed tomography (µCT) was carried out to observe the porosity. Surface behaviour was studied using scanning electron microscopy (SEM) to see the voids and the distribution of the fibres in the samples. The results showed consistent values for tensile strength and elastic modulus for Araldite glue after initial trials (with some other adhesives) to determine a suitable choice of adhesive for bonding the samples with the tabs. Circular specimens have higher tensile strength and elastic modulus as compared to rectangular specimens.
AB - Additively manufactured composite specimens exhibit anisotropic properties, meaning that the elastic response changes with respect to orientation. Both in-plane and out-of-plane mechanical properties are important for designing purpose. Recent studies have characterised the in-plane performance. In this study, however, through-thickness tensile strength of 3D polymer composites were determined by printing of continuous carbon fibre reinforced thermoplastic polyamide-based composite, manufactured using a Markforged Two 3D printer. This paper discusses sample fabrication and geometry, adhesive used, and testing procedure. Test standards used to determine out-of-plane properties are tedious as most of the premature failures occur between the specimens and the tabs. Two types of samples were printed according to ASTM flatwise tension standard and the results were compared to determine the geometry effect on the interlaminar strength. This test method consists of subjecting the printed sample to a uniaxial tensile force normal to the plane. With this method, the acceptable failure modes for tensile strength must be internal to the structure, not between the sample and the end tabs. Micro-computed tomography (µCT) was carried out to observe the porosity. Surface behaviour was studied using scanning electron microscopy (SEM) to see the voids and the distribution of the fibres in the samples. The results showed consistent values for tensile strength and elastic modulus for Araldite glue after initial trials (with some other adhesives) to determine a suitable choice of adhesive for bonding the samples with the tabs. Circular specimens have higher tensile strength and elastic modulus as compared to rectangular specimens.
KW - 3D printing
KW - Additive manufacturing
KW - Carbon fibre
KW - Computed tomography
KW - Polymer composites
KW - Through-thickness
UR - http://www.scopus.com/inward/record.url?scp=85123453813&partnerID=8YFLogxK
U2 - 10.3390/ma15031002
DO - 10.3390/ma15031002
M3 - Article
AN - SCOPUS:85123453813
SN - 1996-1944
VL - 15
JO - Materials
JF - Materials
IS - 3
M1 - 1002
ER -