Abstract
High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li+ is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g-1) and outstanding capacity retention and rate capability.
Original language | English |
---|---|
Pages (from-to) | 27006-27015 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 7 |
Issue number | 48 |
DOIs | |
Publication status | Published - 9 Dec 2015 |
Externally published | Yes |
Keywords
- cathode
- energy storage
- inverse opal
- lithium batteries
- vanadium oxide