TY - JOUR
T1 - Enzyme histochemical localisation of alkaline phosphatase activity in osteogenesis imperfecta bone and growth plate
T2 - A preliminary study
AU - Sarathchandra, P.
AU - Cassella, J. P.
AU - Ali, S. Y.
PY - 2005/10
Y1 - 2005/10
N2 - At the ultrastructural level alkaline phosphatase has been studied in calcifying cartilage but not in bone. The aim of this study was to assess if there is an osteoblast dysfunction in Osteogenesis Imperfecta (OI) with respect to alkaline phosphatase activity. Specimens from three OI type II foetal femoral bones, two OI type II growth plates, one normal foetal femoral bone and growth plate, one OI type III femoral bone specimen and one normal juvenile bone specimens were examined using modified lead nitrate method to identify alkaline phosphatase reactivity. The electron dense reaction product (indicative of the presence of alkaline phosphatase) was demonstrable on the cell membrane of the osteoblasts, as focal concentrations in the collagen osteoid and on the mineralisation front of normal bone. In normal bone the intensity of the reaction seemed to be stronger than in OI bone and appeared as a continuous black line along the osteoblast cell membranes. In OI bone the reaction product only appeared as a few electron dense beads along the osteoblast cell membrane. There appeared to be reduced and diffuse reaction product on OI osteoblasts, thus implying either a reduced level and/or altered activity of alkaline phosphatase and hence a dysfunction of osteoblasts. This confirms the findings of the previous report of the impaired activity of alkaline phosphatase in OI osteoblasts. Even in the OI growth plate, hypertrophic chondrocytes showed less intense reaction product than the chondrocytes in the normal growth plate. The normal human growth plates used in this study showed a similar pattern, but in the OI growth plate even the hypertrophic zone, where the alkaline phosphatase activity is reported to be high, showed less intense reaction product. Biochemical reports indicate that alkaline phosphatase levels are normal in cultured OI cell lines, yet ultrastructural histochemical observations reported here, show reduced enzyme localisation and this may suggest reduced amounts of protein or reduced activity at the tissue level.
AB - At the ultrastructural level alkaline phosphatase has been studied in calcifying cartilage but not in bone. The aim of this study was to assess if there is an osteoblast dysfunction in Osteogenesis Imperfecta (OI) with respect to alkaline phosphatase activity. Specimens from three OI type II foetal femoral bones, two OI type II growth plates, one normal foetal femoral bone and growth plate, one OI type III femoral bone specimen and one normal juvenile bone specimens were examined using modified lead nitrate method to identify alkaline phosphatase reactivity. The electron dense reaction product (indicative of the presence of alkaline phosphatase) was demonstrable on the cell membrane of the osteoblasts, as focal concentrations in the collagen osteoid and on the mineralisation front of normal bone. In normal bone the intensity of the reaction seemed to be stronger than in OI bone and appeared as a continuous black line along the osteoblast cell membranes. In OI bone the reaction product only appeared as a few electron dense beads along the osteoblast cell membrane. There appeared to be reduced and diffuse reaction product on OI osteoblasts, thus implying either a reduced level and/or altered activity of alkaline phosphatase and hence a dysfunction of osteoblasts. This confirms the findings of the previous report of the impaired activity of alkaline phosphatase in OI osteoblasts. Even in the OI growth plate, hypertrophic chondrocytes showed less intense reaction product than the chondrocytes in the normal growth plate. The normal human growth plates used in this study showed a similar pattern, but in the OI growth plate even the hypertrophic zone, where the alkaline phosphatase activity is reported to be high, showed less intense reaction product. Biochemical reports indicate that alkaline phosphatase levels are normal in cultured OI cell lines, yet ultrastructural histochemical observations reported here, show reduced enzyme localisation and this may suggest reduced amounts of protein or reduced activity at the tissue level.
KW - Alkaline phosphatase
KW - Bone
KW - Electron microscopy
KW - Growth plate
KW - Osteogenesis imperfecta
UR - http://www.scopus.com/inward/record.url?scp=28544442716&partnerID=8YFLogxK
U2 - 10.1016/j.micron.2005.05.014
DO - 10.1016/j.micron.2005.05.014
M3 - Article
C2 - 16182549
AN - SCOPUS:28544442716
SN - 0968-4328
VL - 36
SP - 715
EP - 720
JO - Micron
JF - Micron
IS - 7-8
ER -