TY - JOUR
T1 - Evaluation of the role of N-methyl-D-aspartate (NMDA) receptors in insulin secreting beta-cells
AU - Patterson, Steven
AU - Irwin, Nigel
AU - Guo-Parke, Hong
AU - Moffett, R. Charlotte
AU - Scullion, Siobhan M.
AU - Flatt, Peter R.
AU - McClenaghan, Neville H.
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2016/1/15
Y1 - 2016/1/15
N2 - The possibility that antagonism of N-methyl-D-aspartate (NMDA) receptors represent a novel drug target for diabetes prompted the current studies probing NMDA receptor function in the detrimental actions of homocysteine on pancreatic beta-cell function. Cellular insulin content and release, changes in membrane potential and intracellular Ca2+ and gene expression were assessed following acute (20 min) and long-term (18 h) exposure of pancreatic clonal BRIN-BD11 beta-cells to known NMDA receptor modulators in the absence and presence of cytotoxic concentrations of homocysteine. As expected, acute or long-term exposure to homocysteine significantly suppressed basal and secretagogue-induced insulin release. In addition, NMDA reduced glucose-stimulated insulin secretion (GSIS). Interestingly, the selective NMDA receptor antagonist, MK-801, had no negative effects on GSIS. The effects of the NMDA receptor modulators were largely independent of effects on membrane depolarisation and increases of intracellular Ca2+. However, combined culture of the NMDA antagonist, MK-801, with homocysteine did enhance intracellular Ca2+ levels. Actions of NMDA agonists/antagonists and homocysteine on signal transduction pathways were independent of changes in cellular insulin content, cell viability, DNA damage or expression of key beta-cell genes. Taken together, the data support a role for NMDA receptors in controlling pancreatic beta-cell function. However, modulation of NMDA receptor function was unable to prevent the detrimental beta-cell effects of homocysteine.
AB - The possibility that antagonism of N-methyl-D-aspartate (NMDA) receptors represent a novel drug target for diabetes prompted the current studies probing NMDA receptor function in the detrimental actions of homocysteine on pancreatic beta-cell function. Cellular insulin content and release, changes in membrane potential and intracellular Ca2+ and gene expression were assessed following acute (20 min) and long-term (18 h) exposure of pancreatic clonal BRIN-BD11 beta-cells to known NMDA receptor modulators in the absence and presence of cytotoxic concentrations of homocysteine. As expected, acute or long-term exposure to homocysteine significantly suppressed basal and secretagogue-induced insulin release. In addition, NMDA reduced glucose-stimulated insulin secretion (GSIS). Interestingly, the selective NMDA receptor antagonist, MK-801, had no negative effects on GSIS. The effects of the NMDA receptor modulators were largely independent of effects on membrane depolarisation and increases of intracellular Ca2+. However, combined culture of the NMDA antagonist, MK-801, with homocysteine did enhance intracellular Ca2+ levels. Actions of NMDA agonists/antagonists and homocysteine on signal transduction pathways were independent of changes in cellular insulin content, cell viability, DNA damage or expression of key beta-cell genes. Taken together, the data support a role for NMDA receptors in controlling pancreatic beta-cell function. However, modulation of NMDA receptor function was unable to prevent the detrimental beta-cell effects of homocysteine.
KW - Homocysteine
KW - Insulin secretion
KW - MK-801 maleate
KW - N-methyl-D-aspartate receptor (NMDA receptor)
UR - http://www.scopus.com/inward/record.url?scp=84950139283&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2015.12.015
DO - 10.1016/j.ejphar.2015.12.015
M3 - Article
C2 - 26688567
AN - SCOPUS:84950139283
SN - 0014-2999
VL - 771
SP - 107
EP - 113
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
ER -