Extreme Learning Machines for Calibration and Prediction in Wireless Sensor Networks: Advancing Environmental Monitoring Efficiency

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Calibrating wireless sensor network deployments, especially in uncontrolled environments, poses a significant challenge. Existing deep learning approaches for calibration perform well when resource requirements are not constrained However, conventional deep learning models are not well suited for resource constraint environments due to their computational complexity and requirement of resources. To tackle this issue, this paper introduces an extreme learning machine (ELM)-based calibration solution. ELM leverages a single-layer neural network with random weight initialization, enabling faster training and inference. Experimental results demonstrate that ELM results in accelerated learning while maintaining competitive accuracy compared to deep learning approaches like neural networks (NNs).

Original languageEnglish
Title of host publication2023 31st Irish Conference on Artificial Intelligence and Cognitive Science, AICS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350360219
DOIs
Publication statusPublished - 2023
Event31st Irish Conference on Artificial Intelligence and Cognitive Science, AICS 2023 - Letterkenny, Ireland
Duration: 7 Dec 20238 Dec 2023

Publication series

Name2023 31st Irish Conference on Artificial Intelligence and Cognitive Science, AICS 2023

Conference

Conference31st Irish Conference on Artificial Intelligence and Cognitive Science, AICS 2023
Country/TerritoryIreland
CityLetterkenny
Period7/12/238/12/23

Keywords

  • Extreme learning machine
  • sensors calibration

Fingerprint

Dive into the research topics of 'Extreme Learning Machines for Calibration and Prediction in Wireless Sensor Networks: Advancing Environmental Monitoring Efficiency'. Together they form a unique fingerprint.

Cite this