Gene expression and enzyme activity of mitochondrial proteins in irradiated rainbow trout (Oncorhynchus Mykiss, Walbaum) tissues in vitro

Colm O'Dowd, Carmel E. Mothersill, Michael T. Cairns, Brian Austin, Fiona M. Lyng, Brendan McClean, Anita Talbot, James E.J. Murphy

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

In recent years ethical, legislative and economic pressures have created a renewed interest in the development of alternatives to in vivo animal experiments. In vitro studies, particularly those using cell cultures, have been used increasingly as tools to assess the degree of toxicity associated with or present in particular environments. While cell cultures are useful to give relative toxicity values, genotypic and phenotypic integrity may be compromised in the continuous artificial environment they experience. In addition, cell cultures lack the complexity of functional organs and thus do not truly represent the effects that toxins exert on organ and organism functionality. In this study, ex vivo tissue cultures of rainbow trout gill, skin and spleen samples were analyzed for variation of expression in genes associated with oxidative phosphorylation after exposure to ionizing radiation. Significant radiation-induced changes in gene expression and enzyme activity associated with the mitochondrial oxidative phosphorylation process were identified. The tissues examined in this study demonstrated an exposure threshold at which radiation dose stimulates an alteration in the regulatory activity of mitochondrial-associated genes. Spleen tissues exposed to low levels of radiation (0.1 Gy) appeared most sensitive whereas skin tissues proved least sensitive, reacting only to higher doses (>1 Gy). We propose this investigative approach as an innovative alternative to in vivo studies because it identifies toxic exposure in vitro and could significantly reduce the number of live-animal toxicity tests required.

Original languageEnglish
Pages (from-to)464-473
Number of pages10
JournalRadiation Research
Volume171
Issue number4
DOIs
Publication statusPublished - Apr 2009
Externally publishedYes

Fingerprint

Dive into the research topics of 'Gene expression and enzyme activity of mitochondrial proteins in irradiated rainbow trout (Oncorhynchus Mykiss, Walbaum) tissues in vitro'. Together they form a unique fingerprint.

Cite this