TY - JOUR
T1 - Graphene nanoplates filled nylon 6,6 nanocomposites, morphological, thermal, mechanical and solvent uptake study
AU - Saeed, Khalid
AU - Shah, Tariq
AU - Hassan, Ahmad
N1 - Publisher Copyright:
© 2019 Chemical Society of Pakistan. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Effect of graphene nanoplates (GNPs) on the properties of Nylon 6,6 (Nyl 6,6) is investigated in present study. The morphological studies presented that the GNPs were dispersed inside the Nyl 6,6 matrix. The thermo gravimetric analysis (TGA) illustrated that the thermal degradation of nanocomposites samples were started at the range of 350-393 oC, which was appreciably higher than neat Nyl 6,6 (360 oC). The differential scanning calorimetry (DSC) analyses revealed that the crystallization temperature (Tc) of GNPs/Nyl 6,6 increased as increased the addition of GNPs, which might be due to the nucleation effect of GNPs. The mechanical properties of Nyl 6,6 was enhanced by incorporation of GNPs upto the addition of an optimal quantity of filler (5%wt GNPs) into the polymer matrix. The stress yield and Young's modulus of 5%wt GNPs/Nyl 6,6 was 96.79 and 1.54, N/nm2, respectively. Both Nyl 6,6 and nanocomposites samples were also used for the adsorption of Neutral red chloride (NRC) dye, which significantly remove the dye from the aqueous solution. The neat nylon 6,6 and GNPs (5 and 10 wt%)/Nyl 6,6 adsorbed about 88.49, 93.15, and 93.60% within 2 h, respectively.
AB - Effect of graphene nanoplates (GNPs) on the properties of Nylon 6,6 (Nyl 6,6) is investigated in present study. The morphological studies presented that the GNPs were dispersed inside the Nyl 6,6 matrix. The thermo gravimetric analysis (TGA) illustrated that the thermal degradation of nanocomposites samples were started at the range of 350-393 oC, which was appreciably higher than neat Nyl 6,6 (360 oC). The differential scanning calorimetry (DSC) analyses revealed that the crystallization temperature (Tc) of GNPs/Nyl 6,6 increased as increased the addition of GNPs, which might be due to the nucleation effect of GNPs. The mechanical properties of Nyl 6,6 was enhanced by incorporation of GNPs upto the addition of an optimal quantity of filler (5%wt GNPs) into the polymer matrix. The stress yield and Young's modulus of 5%wt GNPs/Nyl 6,6 was 96.79 and 1.54, N/nm2, respectively. Both Nyl 6,6 and nanocomposites samples were also used for the adsorption of Neutral red chloride (NRC) dye, which significantly remove the dye from the aqueous solution. The neat nylon 6,6 and GNPs (5 and 10 wt%)/Nyl 6,6 adsorbed about 88.49, 93.15, and 93.60% within 2 h, respectively.
KW - Adsorption
KW - Graphene nanoplates
KW - Neutral red chloride dye
KW - Nylon 6,6
UR - http://www.scopus.com/inward/record.url?scp=85072222976&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85072222976
SN - 0253-5106
VL - 41
SP - 388
EP - 393
JO - Journal of the Chemical Society of Pakistan
JF - Journal of the Chemical Society of Pakistan
IS - 3
ER -