TY - JOUR
T1 - Graphene oxide reinforced high surface area silica aerogels
AU - Dervin, Saoirse
AU - Lang, Yvonne
AU - Perova, Tatiana
AU - Hinder, Steven H.
AU - Pillai, Suresh C.
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - Silica aerogel structures were intercalated with graphene oxide (GO) via the addition of GO to the colloidal silica sol and subsequent sol–gel polymerization. The potential of GO to act as a nanofiller, for ambient pressure dried, hydrophobic silica aerogels, was systematically investigated. The influences of 0 to 2 wt% GO loadings, on the physical properties of silica aerogels, were analysed by examining the bulk density, volume shrinkage (%), pore volume and surface area of the composite aerogels. Additionally, the chemical composition of the composite gels was determined using FTIR, Raman, XRD and XPS. The study revealed that a GO addition of as little as 0.5 wt% is capable of supporting the porous framework of silica aerogels and also enhancing the properties of the gels simultaneously. The additions of 0.5 wt% GO increased the surface area and pore volume of the aerogel from 390 to 700 m2/g and 0.59 to 0.99 cm3, respectively, and decreased aerogel density from 0.19 to 0.14 g/cm3. The investigation therefore revealed that intercalation of the silica aerogel matrix with small quantities of GO can inhibit volume shrinkage during drying without hindering the physical properties of silica aerogels.
AB - Silica aerogel structures were intercalated with graphene oxide (GO) via the addition of GO to the colloidal silica sol and subsequent sol–gel polymerization. The potential of GO to act as a nanofiller, for ambient pressure dried, hydrophobic silica aerogels, was systematically investigated. The influences of 0 to 2 wt% GO loadings, on the physical properties of silica aerogels, were analysed by examining the bulk density, volume shrinkage (%), pore volume and surface area of the composite aerogels. Additionally, the chemical composition of the composite gels was determined using FTIR, Raman, XRD and XPS. The study revealed that a GO addition of as little as 0.5 wt% is capable of supporting the porous framework of silica aerogels and also enhancing the properties of the gels simultaneously. The additions of 0.5 wt% GO increased the surface area and pore volume of the aerogel from 390 to 700 m2/g and 0.59 to 0.99 cm3, respectively, and decreased aerogel density from 0.19 to 0.14 g/cm3. The investigation therefore revealed that intercalation of the silica aerogel matrix with small quantities of GO can inhibit volume shrinkage during drying without hindering the physical properties of silica aerogels.
KW - Aerogel
KW - Graphene
KW - Graphene oxide
KW - Silica
UR - http://www.scopus.com/inward/record.url?scp=85016486117&partnerID=8YFLogxK
U2 - 10.1016/j.jnoncrysol.2017.03.030
DO - 10.1016/j.jnoncrysol.2017.03.030
M3 - Article
AN - SCOPUS:85016486117
SN - 0022-3093
VL - 465
SP - 31
EP - 38
JO - Journal of Non-Crystalline Solids
JF - Journal of Non-Crystalline Solids
ER -