TY - JOUR
T1 - Grid-edge technology - Exploring the flexibility potential of a heat pump and thermal energy storage system
AU - Schellenberg, Christoph
AU - Dimache, Laurentiu
AU - Lohan, John
N1 - Publisher Copyright:
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
PY - 2019/8/13
Y1 - 2019/8/13
N2 - Grid-edge technologies (GET) enable and amplify the impact of three emerging energy system trends: electrification, decentralisation, and digitalisation. Smart grid integrated heat pumps with thermal energy storage enable both the electrification of heating and decentralised demand response. Such power-to-heat technologies simultaneously decarbonise heating and facilitate the grid integration of more variable renewable electricity in a cost-effective manner. This may help to explore and exploit untapped wind generation potential. This study explores the flexibility potential of a domestic scale heat pump with thermal energy storage in a typical Irish home in December. The system is simulated to investigate demand-side flexibility and sensitivity to both heat pump and thermal storage capacities for three days with wind energy shares of 7%, 25%, and 60%. Using real-time electricity prices and optimising for operational cost, the implicit demand flexibility potential is quantified with different combinations of heat pump power and storage capacity. The results suggest that 33-100% of critical loads can be shifted dynamically to low-cost periods. Optimised system design depends on local climate, heat demand profile, optimisation horizon, and the type of heat pump. Optimisation with genetic algorithm yielded near-global optimal results approximately 40 times faster than with exhaustive enumeration.
AB - Grid-edge technologies (GET) enable and amplify the impact of three emerging energy system trends: electrification, decentralisation, and digitalisation. Smart grid integrated heat pumps with thermal energy storage enable both the electrification of heating and decentralised demand response. Such power-to-heat technologies simultaneously decarbonise heating and facilitate the grid integration of more variable renewable electricity in a cost-effective manner. This may help to explore and exploit untapped wind generation potential. This study explores the flexibility potential of a domestic scale heat pump with thermal energy storage in a typical Irish home in December. The system is simulated to investigate demand-side flexibility and sensitivity to both heat pump and thermal storage capacities for three days with wind energy shares of 7%, 25%, and 60%. Using real-time electricity prices and optimising for operational cost, the implicit demand flexibility potential is quantified with different combinations of heat pump power and storage capacity. The results suggest that 33-100% of critical loads can be shifted dynamically to low-cost periods. Optimised system design depends on local climate, heat demand profile, optimisation horizon, and the type of heat pump. Optimisation with genetic algorithm yielded near-global optimal results approximately 40 times faster than with exhaustive enumeration.
UR - http://www.scopus.com/inward/record.url?scp=85071884211&partnerID=8YFLogxK
U2 - 10.1051/e3sconf/201911106002
DO - 10.1051/e3sconf/201911106002
M3 - Conference article
AN - SCOPUS:85071884211
SN - 2555-0403
VL - 111
JO - E3S Web of Conferences
JF - E3S Web of Conferences
M1 - 06002
T2 - 13th REHVA World Congress, CLIMA 2019
Y2 - 26 May 2019 through 29 May 2019
ER -