Improved adhesion of nonfluorinated ZnO nanotriangle superhydrophobic layer on glass surface by spray-coating method

Norfatehah Basiron, Srimala Sreekantan, Khairul Arifah Saharudin, Zainal Arifin Ahmad, Vignesh Kumaravel

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

In this present work, a superhydrophobic glass surface comprising zinc oxide nanotriangles (ZnO-nt) and nontoxic silylating agent was developed via a cost-effective spray-coating technology. ZnO-nt was synthesized by a hydrothermal method. Poly(dimethylsiloxane) (PDMS) and dimethyldiethoxysilane (DMDEOS) were used as nontoxic (nonfluoro) silylating agents. The morphology and crystallinity of ZnO-nt were studied using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. ZnO-nt with polymeric silane (PDMS) exhibited maximum wettability as compared to nonpolymeric silane (DMDEOS). The water contact angle (WCA), sliding angle (SA), and surface roughness of ZnO-nt/PDMS-coated glass substrate under UV treatment were 165 ± 1°, 3± 1°, and 791 nm, respectively. The WCA of ZnO-nt/PDMS was higher (165°) than that of commercial ZnO/PDMS (ZnO-C/PDMS). ZnO-nt/PDMS was strongly attached to the glass substrate with good stability and adhesion. The reasons for improved hydrophobicity, adhesion, and mechanism of hierarchical microstructure formation on the glass substrate were explained in detail. PDMS was attached to the glass substrate via hydrogen bonds from solvated zinc acetate.

Original languageEnglish
Article number7824827
JournalJournal of Nanomaterials
Volume2018
DOIs
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'Improved adhesion of nonfluorinated ZnO nanotriangle superhydrophobic layer on glass surface by spray-coating method'. Together they form a unique fingerprint.

Cite this