TY - JOUR
T1 - Influence of Raster Pattern on Residual Stress and Part Distortion in FDM of Semi-Crystalline Polymers
T2 - A Simulation Study
AU - Samy, Anto Antony
AU - Golbang, Atefeh
AU - Harkin-Jones, Eileen
AU - Archer, Edward
AU - Dahale, Monali
AU - McAfee, Marion
AU - Abdi, Behzad
AU - McIlhagger, Alistair
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - In fused deposition modelling (FDM) based on the selected raster pattern, the developed internal thermal residual stresses can vary considerably affecting the mechanical properties and leading to distinct part distortions. This phenomenon is more pronounced in semi-crystalline than amorphous polymers due to crystallisation. Hence, this study focuses on the simulation of the FDM process of a semi-crystalline polymer (polypropylene) with raster patterns such as line (90◦/90◦), line (0◦/90◦), zigzag (45◦/45◦), zigzag (45◦/−45◦), and concentric from Cura (slicing software). The simulation provides visualisation and prediction of the internally developed thermal residual stresses and resulting warpage with printing time and temperature. The sample with a line (90◦/90◦) raster pattern is considered as the reference sample in order to compare the relative levels of residual stress and warpage in the other printed/simulated samples. Among the considered raster patterns, the concentric pattern displays the lowest amount of warpage (5.5% decrease) along with a significant drop in residual stress of 21%. While the sample with a zigzag (45◦/−45◦) pattern showed the highest increase of 37% in warpage along with a decrease of 9.8% in residual stresses. The sample with a zigzag (45◦/45◦) pattern, exhibited a considerable increase of 16.2% in warpage with a significant increase of 31% in residual stresses. Finally, the sample with a line (0◦/90◦) raster pattern displayed an increase of 24% increase in warpage with an increase of 6.6% in residual stresses.
AB - In fused deposition modelling (FDM) based on the selected raster pattern, the developed internal thermal residual stresses can vary considerably affecting the mechanical properties and leading to distinct part distortions. This phenomenon is more pronounced in semi-crystalline than amorphous polymers due to crystallisation. Hence, this study focuses on the simulation of the FDM process of a semi-crystalline polymer (polypropylene) with raster patterns such as line (90◦/90◦), line (0◦/90◦), zigzag (45◦/45◦), zigzag (45◦/−45◦), and concentric from Cura (slicing software). The simulation provides visualisation and prediction of the internally developed thermal residual stresses and resulting warpage with printing time and temperature. The sample with a line (90◦/90◦) raster pattern is considered as the reference sample in order to compare the relative levels of residual stress and warpage in the other printed/simulated samples. Among the considered raster patterns, the concentric pattern displays the lowest amount of warpage (5.5% decrease) along with a significant drop in residual stress of 21%. While the sample with a zigzag (45◦/−45◦) pattern showed the highest increase of 37% in warpage along with a decrease of 9.8% in residual stresses. The sample with a zigzag (45◦/45◦) pattern, exhibited a considerable increase of 16.2% in warpage with a significant increase of 31% in residual stresses. Finally, the sample with a line (0◦/90◦) raster pattern displayed an increase of 24% increase in warpage with an increase of 6.6% in residual stresses.
KW - Fused Deposition Modeling (FDM)
KW - raster pattern
KW - residual stress
KW - semi-crystalline polymers
KW - simulation
KW - warpage
UR - http://www.scopus.com/inward/record.url?scp=85135497883&partnerID=8YFLogxK
U2 - 10.3390/polym14132746
DO - 10.3390/polym14132746
M3 - Article
AN - SCOPUS:85135497883
SN - 2073-4360
VL - 14
JO - Polymers
JF - Polymers
IS - 13
M1 - 2746
ER -