TY - GEN
T1 - Investigating human bone microarchitecture and dielectric properties in microwave frequency range
AU - Amin, Bilal
AU - Shahzad, Atif
AU - Farina, Laura
AU - Parle, Eoin
AU - Mcnamara, Laoise
AU - Orhalloran, Martin
AU - Elahi, Muhammad Adnan
N1 - Publisher Copyright:
© 2019 European Association on Antennas and Propagation.
PY - 2019/3
Y1 - 2019/3
N2 - Dielectric properties of bones are proposed to monitor bone quality. However, no study has investigated the relationship between bone dielectric properties and microarchitecture of bone, which is of paramount importance for bone quality assessment. This paper reports the first in-vitro investigation of relationship between dielectric properties of human trabecular bone (n = 45) and its microarchitecture parameters (trabecular number, trabecular thickness and trabecular spacing). The objective of the study was to investigate the difference between osteoporotic (n = 23) and osteoarthritis (n = 22) patients in terms of microarchitectural parameters and dielectric properties and to examine any relationship between microarchitectural parameters and dielectric properties. A significant difference was observed between osteoporotic and osteoarthritis patients in terms of microarchitecture parameters. The trabecular number and trabecular thickness were found to be significantly high for osteoarthritis patients in comparison to osteoporotic patients. The percentage difference for trabecular number and trabecular thickness between both patients group was found to be 27% and 31% respectively. Trabecular spacing was lower in osteoarthritis patients compared to osteoporotic patients. Similar differences were also observed between both patients group in terms of dielectric properties. More importantly, the dielectric properties were significantly higher for osteoarthritis patients than osteoporotic patients with a percentage difference of 42% and 32% at 900 MHz in terms of relative permittivity and conductivity respectively. These preliminary findings support the idea of using dielectric properties to as a method to differentiate bone quality.
AB - Dielectric properties of bones are proposed to monitor bone quality. However, no study has investigated the relationship between bone dielectric properties and microarchitecture of bone, which is of paramount importance for bone quality assessment. This paper reports the first in-vitro investigation of relationship between dielectric properties of human trabecular bone (n = 45) and its microarchitecture parameters (trabecular number, trabecular thickness and trabecular spacing). The objective of the study was to investigate the difference between osteoporotic (n = 23) and osteoarthritis (n = 22) patients in terms of microarchitectural parameters and dielectric properties and to examine any relationship between microarchitectural parameters and dielectric properties. A significant difference was observed between osteoporotic and osteoarthritis patients in terms of microarchitecture parameters. The trabecular number and trabecular thickness were found to be significantly high for osteoarthritis patients in comparison to osteoporotic patients. The percentage difference for trabecular number and trabecular thickness between both patients group was found to be 27% and 31% respectively. Trabecular spacing was lower in osteoarthritis patients compared to osteoporotic patients. Similar differences were also observed between both patients group in terms of dielectric properties. More importantly, the dielectric properties were significantly higher for osteoarthritis patients than osteoporotic patients with a percentage difference of 42% and 32% at 900 MHz in terms of relative permittivity and conductivity respectively. These preliminary findings support the idea of using dielectric properties to as a method to differentiate bone quality.
KW - bones
KW - dielectric properties
KW - osteoarthritis
KW - osteoporotic
KW - trabecular microarchitecture
UR - http://www.scopus.com/inward/record.url?scp=85068473298&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85068473298
T3 - 13th European Conference on Antennas and Propagation, EuCAP 2019
BT - 13th European Conference on Antennas and Propagation, EuCAP 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 13th European Conference on Antennas and Propagation, EuCAP 2019
Y2 - 31 March 2019 through 5 April 2019
ER -