TY - JOUR
T1 - Lead-Free Double Perovskites
T2 - A Review of the Structural, Optoelectronic, Mechanical, and Thermoelectric Properties Derived from First-Principles Calculations, and Materials Design Applicable for Pedagogical Purposes
AU - Obada, David O.
AU - Akinpelu, Shittu B.
AU - Abolade, Simeon A.
AU - Okafor, Emmanuel
AU - Ukpong, Aniekan M.
AU - Kumar, Syam R.
AU - Akande, Akinlolu
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2024/1
Y1 - 2024/1
N2 - Metal halide perovskite materials have shown significant advancements in their application as light absorbers in perovskite solar cells, with power conversion efficiencies reaching 27%. However, lead-based perovskites pose a concern due to their toxicity and stability issues in moisture, UV radiation, and heat. This has led to a pressing need to explore substitute materials that do not contain lead but maintain the remarkable characteristics of lead-based perovskites. This review article focuses on halide double perovskites characterised by the A2B’B”X6 composition, highlighting their structural, optical, thermoelectric, and mechanical capabilities. Additionally, the review evaluates several materials databases to investigate materials suitable for high-throughput first-principles calculations integrated inside density functional theory. The review aims to identify novel perovskite materials, offer a thorough evaluation of the potential benefits and drawbacks associated with this class of materials, and, from the pedagogical standpoint, discover effective instructional frameworks.
AB - Metal halide perovskite materials have shown significant advancements in their application as light absorbers in perovskite solar cells, with power conversion efficiencies reaching 27%. However, lead-based perovskites pose a concern due to their toxicity and stability issues in moisture, UV radiation, and heat. This has led to a pressing need to explore substitute materials that do not contain lead but maintain the remarkable characteristics of lead-based perovskites. This review article focuses on halide double perovskites characterised by the A2B’B”X6 composition, highlighting their structural, optical, thermoelectric, and mechanical capabilities. Additionally, the review evaluates several materials databases to investigate materials suitable for high-throughput first-principles calculations integrated inside density functional theory. The review aims to identify novel perovskite materials, offer a thorough evaluation of the potential benefits and drawbacks associated with this class of materials, and, from the pedagogical standpoint, discover effective instructional frameworks.
KW - double perovskites
KW - lead-free materials
KW - light absorbers
KW - metal halide perovskites
KW - perovskite solar cells
KW - power conversion efficiency
UR - http://www.scopus.com/inward/record.url?scp=85183386761&partnerID=8YFLogxK
U2 - 10.3390/cryst14010086
DO - 10.3390/cryst14010086
M3 - Review article
AN - SCOPUS:85183386761
SN - 2073-4352
VL - 14
JO - Crystals
JF - Crystals
IS - 1
M1 - 86
ER -