TY - JOUR
T1 - Meta-analysis shows environmental contaminants elevate cortisol levels in teleost fish – Effect sizes depend on contaminant class and duration of experimental exposure
AU - Rohonczy, Jillian
AU - O'Dwyer, Katie
AU - Rochette, Alicia
AU - Robinson, Stacey A.
AU - Forbes, Mark R.
N1 - Publisher Copyright:
© 2021
PY - 2021/12/15
Y1 - 2021/12/15
N2 - Glucocorticoid hormones (GCs) help vertebrates maintain homeostasis during and following challenging events. Short-term elevations in GC levels are necessary for survival, whereas longer-term changes can lead to reduced reproductive output and immunosuppression. Persistent environmental contaminants (ECs) are widespread globally. Experimental exposure of individuals to ECs is associated with varying GC responses, within, and across, species and contaminants. Individuals exposed to ECs over long durations are expected to have prolonged GC elevations, which likely affect their health. We conducted a meta-analysis to test for a relationship between fish GC levels and experimental exposure to ECs, and to explore potential moderators, including duration of exposure, that could help explain the variation in effect sizes within and between studies. We report almost exclusively on cortisol responses of teleost fish to ECs. Although there was much variation in effect sizes, captive-bred fish exposed to ECs had baseline GC levels 1.5× higher than unexposed fish, and fish exposed to pharmaceuticals (estradiols and stimulants being mainly considered) had baseline GC levels approximately 2.5× higher than unexposed fish. We found that captive-bred and wild-caught fish did not differ in GC levels after exposure to the same classes of ECs - studies on captive bred fish may thus enable inferences about GC responses to ECs for wild species. Furthermore, effect sizes did not differ between baseline and challenge-induced GC measures. In different analyses, duration of exposure was negatively correlated to effect size, suggesting that the GC response may acclimate after chronic exposure to some ECs which could potentially alter the GC response of EC-exposed fish to novel stressors. Future studies should explore the effect of multiple stressors on the fish GC response and perform tests on a broader array of contaminant types and vertebrate classes.
AB - Glucocorticoid hormones (GCs) help vertebrates maintain homeostasis during and following challenging events. Short-term elevations in GC levels are necessary for survival, whereas longer-term changes can lead to reduced reproductive output and immunosuppression. Persistent environmental contaminants (ECs) are widespread globally. Experimental exposure of individuals to ECs is associated with varying GC responses, within, and across, species and contaminants. Individuals exposed to ECs over long durations are expected to have prolonged GC elevations, which likely affect their health. We conducted a meta-analysis to test for a relationship between fish GC levels and experimental exposure to ECs, and to explore potential moderators, including duration of exposure, that could help explain the variation in effect sizes within and between studies. We report almost exclusively on cortisol responses of teleost fish to ECs. Although there was much variation in effect sizes, captive-bred fish exposed to ECs had baseline GC levels 1.5× higher than unexposed fish, and fish exposed to pharmaceuticals (estradiols and stimulants being mainly considered) had baseline GC levels approximately 2.5× higher than unexposed fish. We found that captive-bred and wild-caught fish did not differ in GC levels after exposure to the same classes of ECs - studies on captive bred fish may thus enable inferences about GC responses to ECs for wild species. Furthermore, effect sizes did not differ between baseline and challenge-induced GC measures. In different analyses, duration of exposure was negatively correlated to effect size, suggesting that the GC response may acclimate after chronic exposure to some ECs which could potentially alter the GC response of EC-exposed fish to novel stressors. Future studies should explore the effect of multiple stressors on the fish GC response and perform tests on a broader array of contaminant types and vertebrate classes.
KW - Exposure duration
KW - HPI axis
KW - Pollutants
KW - Response ratio
KW - Stress hormones
KW - Stressor
UR - http://www.scopus.com/inward/record.url?scp=85112337221&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2021.149402
DO - 10.1016/j.scitotenv.2021.149402
M3 - Article
C2 - 34399351
AN - SCOPUS:85112337221
SN - 0048-9697
VL - 800
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 149402
ER -