TY - JOUR
T1 - Microwave Imaging of Voids in Oil Palm Trunk Applying UWB Antenna and Robust Time-Reversal Algorithm
AU - Saeidi, Tale
AU - Ismail, Idris
AU - Mahmood, Sarmad Nozad
AU - Alani, Sameer
AU - Alhawari, Adam R.H.
N1 - Publisher Copyright:
© 2020 Tale Saeidi et al.
PY - 2020
Y1 - 2020
N2 - The oil palm trees in Southeast Asia face a great challenge due to voids within tree trunks. Besides, both plantations and the palm oil industry suffered considerable losses due to ineffective inspection of defective trees. Several techniques such as ultrasound, X-ray, capacitive volume, gamma computed tomography, and microwave tomography were applied to detect and control the decay of a trunk. However, all the techniques showed substantial drawbacks (such as limited resolution, tedious processing time, and use of bulky equipment with limited mobility) except for microwave tomography which overtook the other techniques by using a method that distinguishes the dielectric properties of healthy and diseased trunks. This work proposes ultra-wide-band (UWB) signal transmission and reception using antenna sensor arrays that record reflections from affected regions in the trunk. Various factors have been considered, such as different cylindrical arrays of 4, 8, 12, and 16 antennas; different positions of hollows; a heterogeneous trunk; multiple targets; and larger trunk samples (16-30 cm). To validate the system's capabilities, two cylindrical wood samples with different diameters of 100 mm and 140 mm and with one hollow and three hollows within are 3D-printed, investigated, and then measured. The authors recommended a robust time-reversal algorithm (RTR) to reconstruct 2D images that successfully identified and localized cavities with the smallest diameter of 3.5 mm. Furthermore, reconstructed images of measured data verified a practical and reliable oil palm trunk imaging and sensing system with a high structural similarity index and resolution.
AB - The oil palm trees in Southeast Asia face a great challenge due to voids within tree trunks. Besides, both plantations and the palm oil industry suffered considerable losses due to ineffective inspection of defective trees. Several techniques such as ultrasound, X-ray, capacitive volume, gamma computed tomography, and microwave tomography were applied to detect and control the decay of a trunk. However, all the techniques showed substantial drawbacks (such as limited resolution, tedious processing time, and use of bulky equipment with limited mobility) except for microwave tomography which overtook the other techniques by using a method that distinguishes the dielectric properties of healthy and diseased trunks. This work proposes ultra-wide-band (UWB) signal transmission and reception using antenna sensor arrays that record reflections from affected regions in the trunk. Various factors have been considered, such as different cylindrical arrays of 4, 8, 12, and 16 antennas; different positions of hollows; a heterogeneous trunk; multiple targets; and larger trunk samples (16-30 cm). To validate the system's capabilities, two cylindrical wood samples with different diameters of 100 mm and 140 mm and with one hollow and three hollows within are 3D-printed, investigated, and then measured. The authors recommended a robust time-reversal algorithm (RTR) to reconstruct 2D images that successfully identified and localized cavities with the smallest diameter of 3.5 mm. Furthermore, reconstructed images of measured data verified a practical and reliable oil palm trunk imaging and sensing system with a high structural similarity index and resolution.
UR - http://www.scopus.com/inward/record.url?scp=85094826543&partnerID=8YFLogxK
U2 - 10.1155/2020/8895737
DO - 10.1155/2020/8895737
M3 - Article
AN - SCOPUS:85094826543
SN - 1687-725X
VL - 2020
JO - Journal of Sensors
JF - Journal of Sensors
M1 - 8895737
ER -