Modulation of oxidative phosphorylation (OXPHOS) by radiation- induced biophotons

Michelle Le, Fiona E. McNeill, Colin B. Seymour, Andrej Rusin, Kevin Diamond, Andrew J. Rainbow, James Murphy, Carmel E. Mothersill

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

Radiation-induced biophotons are an electromagnetic form of bystander signalling. In human cells, biophoton signalling is capable of eliciting effects in non-irradiated bystander cells. However, the mechanisms by which the biophotons interact and act upon the bystander cells are not clearly understood. Mitochondrial energy production and ROS are known to be involved but the precise interactions are not known. To address this question, we have investigated the effect of biophoton emission upon the function of the complexes of oxidative phosphorylation (OXPHOS). The exposure of bystander HCT116 p53 +/+ cells to biophoton signals emitted from β-irradiated HCT116 p53 +/+ cells induced significant modifications in the activity of Complex I (NADH dehydrogenase or NADH:ubiquinone oxidoreductase) such that the activity was severely diminished compared to non-irradiated controls. The enzymatic assay showed that the efficiency of NADH oxidation to NAD+ was severely compromised. It is suspected that this impairment may be linked to the photoabsorption of biophotons in the blue wavelength range (492–455 nm). The photobiomodulation to Complex I was suspected to contribute greatly to the inefficiency of ATP synthase function since it resulted in a lower quantity of H+ ions to be available for use in the process of chemiosmosis. Other reactions of the ETC were not significantly impacted. Overall, these results provide evidence for a link between biophoton emission and biomodulation of the mitochondrial ATP synthesis process. However, there are many aspects of biological modulation by radiation-induced biophotons which will require further elucidation.

Original languageEnglish
Pages (from-to)80-87
Number of pages8
JournalEnvironmental Research
Volume163
DOIs
Publication statusPublished - May 2018

Keywords

  • Biophotons
  • Bystander effect
  • Ionising radiation
  • Mitochondria
  • Mitochondrial electron transport chain
  • OXPHOS

Fingerprint

Dive into the research topics of 'Modulation of oxidative phosphorylation (OXPHOS) by radiation- induced biophotons'. Together they form a unique fingerprint.

Cite this