TY - JOUR
T1 - Nanostructured Ti1- xSxO2- yNy heterojunctions for efficient visible-light-induced photocatalysis
AU - Etacheri, Vinodkumar
AU - Seery, Michael K.
AU - Hinder, Steven J.
AU - Pillai, Suresh C.
PY - 2012/7/2
Y1 - 2012/7/2
N2 - Highly visible-light-active S,N-codoped anatase-rutile heterojunctions are reported for the first time. The formation of heterojunctions at a relatively low temperature and visible-light activity are achieved through thiourea modification of the peroxo-titania complex. FT-IR spectroscopic studies indicated the formation of a Ti4+-thiourea complex upon reaction between peroxo-titania complex and thiourea. Decomposition of the Ti 4+-thiourea complex and formation of visible-light-active S,N-codoped TiO2 heterojunctions are confirmed using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and UV/vis spectroscopic studies. Existence of sulfur as sulfate ions (S6+) and nitrogen as lattice (N-Ti-N) and interstitial (Ti-N-O) species in heterojunctions are identified using X-ray photoelectron spectroscopy (XPS) and FT-IR spectroscopic techniques. UV-vis and valence band XPS studies of these S,N-codoped heterojunctions proved the fact that the formation of isolated S 3p, N 2p, and η * N-O states between the valence and conduction bands are responsible for the visible-light absorption. Titanium dioxide obtained from the peroxo-titania complex exists as pure anatase up to a calcination temperature as high as 900 °C. Whereas, thiourea-modified samples are converted to S,N-codoped anatase-rutile heterojunctions at a temperature as low as 500 °C. The most active S,N-codoped heterojunction 0.2 TU-TiO2 calcined at 600 °C exhibits a 2-fold and 8-fold increase in visible-light photocatalytic activities in contrast to the control sample and the commercial photocatalyst Degussa P-25, respectively. It is proposed that the efficient electron-hole separation due to anatase to rutile electron transfer is responsible for the superior visible-light-induced photocatalytic activities of S,N-codoped heterojunctions.
AB - Highly visible-light-active S,N-codoped anatase-rutile heterojunctions are reported for the first time. The formation of heterojunctions at a relatively low temperature and visible-light activity are achieved through thiourea modification of the peroxo-titania complex. FT-IR spectroscopic studies indicated the formation of a Ti4+-thiourea complex upon reaction between peroxo-titania complex and thiourea. Decomposition of the Ti 4+-thiourea complex and formation of visible-light-active S,N-codoped TiO2 heterojunctions are confirmed using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and UV/vis spectroscopic studies. Existence of sulfur as sulfate ions (S6+) and nitrogen as lattice (N-Ti-N) and interstitial (Ti-N-O) species in heterojunctions are identified using X-ray photoelectron spectroscopy (XPS) and FT-IR spectroscopic techniques. UV-vis and valence band XPS studies of these S,N-codoped heterojunctions proved the fact that the formation of isolated S 3p, N 2p, and η * N-O states between the valence and conduction bands are responsible for the visible-light absorption. Titanium dioxide obtained from the peroxo-titania complex exists as pure anatase up to a calcination temperature as high as 900 °C. Whereas, thiourea-modified samples are converted to S,N-codoped anatase-rutile heterojunctions at a temperature as low as 500 °C. The most active S,N-codoped heterojunction 0.2 TU-TiO2 calcined at 600 °C exhibits a 2-fold and 8-fold increase in visible-light photocatalytic activities in contrast to the control sample and the commercial photocatalyst Degussa P-25, respectively. It is proposed that the efficient electron-hole separation due to anatase to rutile electron transfer is responsible for the superior visible-light-induced photocatalytic activities of S,N-codoped heterojunctions.
UR - http://www.scopus.com/inward/record.url?scp=84863332347&partnerID=8YFLogxK
U2 - 10.1021/ic3001653
DO - 10.1021/ic3001653
M3 - Article
C2 - 22690945
AN - SCOPUS:84863332347
SN - 0020-1669
VL - 51
SP - 7164
EP - 7173
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 13
ER -