TY - GEN
T1 - Optimal kinematic redundancy planning for planar mobile cable-driven parallel robots
AU - Rasheed, Tahir
AU - Marquez-Gamez, David
AU - Long, Philip
AU - Caro, Stéphane
N1 - Publisher Copyright:
Copyright © 2018 ASME
PY - 2018
Y1 - 2018
N2 - Mobile Cable-Driven Parallel Robots (MCDPRs) are special type of Reconfigurable Cable Driven Parallel Robots (RCDPRs) with the ability of undergoing an autonomous change in their geometric architecture. MCDPRs consists of a classical Cable-Driven Parallel Robot (CDPR) carried by multiple Mobile Bases (MBs). Generally MCDPRs are kinematically redundant due to the additional mobilities generated by the motion of the MBs. As a consequence, this paper introduces a methodology that aims to determine the best kinematic redundancy scheme of Planar MCDPRs (PMCDPRs) with one degree of kinematic redundancy for pick-and-place operations. This paper also discusses the Static Equilibrium (SE) constraints of the PMCDPR MBs that are needed to be respected during the task. A case study of a PMCDPR with two MBs, four cables and a three degree-of-freedom (DoF) Moving Platform (MP) is considered.
AB - Mobile Cable-Driven Parallel Robots (MCDPRs) are special type of Reconfigurable Cable Driven Parallel Robots (RCDPRs) with the ability of undergoing an autonomous change in their geometric architecture. MCDPRs consists of a classical Cable-Driven Parallel Robot (CDPR) carried by multiple Mobile Bases (MBs). Generally MCDPRs are kinematically redundant due to the additional mobilities generated by the motion of the MBs. As a consequence, this paper introduces a methodology that aims to determine the best kinematic redundancy scheme of Planar MCDPRs (PMCDPRs) with one degree of kinematic redundancy for pick-and-place operations. This paper also discusses the Static Equilibrium (SE) constraints of the PMCDPR MBs that are needed to be respected during the task. A case study of a PMCDPR with two MBs, four cables and a three degree-of-freedom (DoF) Moving Platform (MP) is considered.
UR - http://www.scopus.com/inward/record.url?scp=85057103322&partnerID=8YFLogxK
U2 - 10.1115/DETC2018-86182
DO - 10.1115/DETC2018-86182
M3 - Conference contribution
AN - SCOPUS:85057103322
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 42nd Mechanisms and Robotics Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
Y2 - 26 August 2018 through 29 August 2018
ER -