Optimal kinematic redundancy planning for planar mobile cable-driven parallel robots

Tahir Rasheed, David Marquez-Gamez, Philip Long, Stéphane Caro

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

Mobile Cable-Driven Parallel Robots (MCDPRs) are special type of Reconfigurable Cable Driven Parallel Robots (RCDPRs) with the ability of undergoing an autonomous change in their geometric architecture. MCDPRs consists of a classical Cable-Driven Parallel Robot (CDPR) carried by multiple Mobile Bases (MBs). Generally MCDPRs are kinematically redundant due to the additional mobilities generated by the motion of the MBs. As a consequence, this paper introduces a methodology that aims to determine the best kinematic redundancy scheme of Planar MCDPRs (PMCDPRs) with one degree of kinematic redundancy for pick-and-place operations. This paper also discusses the Static Equilibrium (SE) constraints of the PMCDPR MBs that are needed to be respected during the task. A case study of a PMCDPR with two MBs, four cables and a three degree-of-freedom (DoF) Moving Platform (MP) is considered.

Original languageEnglish
Title of host publication42nd Mechanisms and Robotics Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851814
DOIs
Publication statusPublished - 2018
Externally publishedYes
EventASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018 - Quebec City, Canada
Duration: 26 Aug 201829 Aug 2018

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume5B-2018

Conference

ConferenceASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
Country/TerritoryCanada
CityQuebec City
Period26/08/1829/08/18

Fingerprint

Dive into the research topics of 'Optimal kinematic redundancy planning for planar mobile cable-driven parallel robots'. Together they form a unique fingerprint.

Cite this