TY - JOUR
T1 - Photocatalytic activity of magnetically recoverable MnFe2O4/g-C3N4/TiO2 nanocomposite under simulated solar light irradiation
AU - Vignesh, K.
AU - Suganthi, A.
AU - Min, Bong Ki
AU - Kang, Misook
N1 - Publisher Copyright:
© 2014 Elsevier B.V. All rights reserved.
PY - 2014/12
Y1 - 2014/12
N2 - A magnetic nanocomposite composed of manganese ferrite (MnFe2O4), graphitic-carbon nitride (g-C3N4) and titanium dioxide-P25 (TiO2) was synthesized via chemical impregnation method. The as-synthesized nanocomposite (MnFe2O4/g-C3N4/TiO2) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution TEM (HR-TEM) elemental mapping, energy dispersive X-ray spectroscopy (EDX), UV-visible diffuse reflectance spectroscopy (UV-vis-DRS), photoluminescence (PL), B.E.T. surface area analysis, X-ray photo-electron spectroscopy and vibrating sample magnetometery (VSM) techniques. The band gap of TiO2 was decreased after surface modification with MnFe2O4/g-C3N4. The photocatalytic activity was tested for the degradation of methyl orange (MO) dye as a model pollutant under simulated solar light irradiation. It was found that MnFe2O4/g-C3N4/TiO2 displayed excellent photocatalytic activity than that of g-C3N4, MnFe2O4 and MnFe2O4/g-C3N4. The enhancement in the photocatalytic activity was ascribed to the synergism between TiO2, g-C3N4 and MnFe2O4. VSM results revealed that ferromagnetism was retained in the nanocomposite (MnFe2O4/g-C3N4/TiO2) and it could be easily removed using an external magnet after the photo-reaction. Besides, the durability and stability of magnetic nanocomposite was tested by recycling experiments.
AB - A magnetic nanocomposite composed of manganese ferrite (MnFe2O4), graphitic-carbon nitride (g-C3N4) and titanium dioxide-P25 (TiO2) was synthesized via chemical impregnation method. The as-synthesized nanocomposite (MnFe2O4/g-C3N4/TiO2) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution TEM (HR-TEM) elemental mapping, energy dispersive X-ray spectroscopy (EDX), UV-visible diffuse reflectance spectroscopy (UV-vis-DRS), photoluminescence (PL), B.E.T. surface area analysis, X-ray photo-electron spectroscopy and vibrating sample magnetometery (VSM) techniques. The band gap of TiO2 was decreased after surface modification with MnFe2O4/g-C3N4. The photocatalytic activity was tested for the degradation of methyl orange (MO) dye as a model pollutant under simulated solar light irradiation. It was found that MnFe2O4/g-C3N4/TiO2 displayed excellent photocatalytic activity than that of g-C3N4, MnFe2O4 and MnFe2O4/g-C3N4. The enhancement in the photocatalytic activity was ascribed to the synergism between TiO2, g-C3N4 and MnFe2O4. VSM results revealed that ferromagnetism was retained in the nanocomposite (MnFe2O4/g-C3N4/TiO2) and it could be easily removed using an external magnet after the photo-reaction. Besides, the durability and stability of magnetic nanocomposite was tested by recycling experiments.
KW - Methyl orange
KW - Nanocomposite
KW - Photocatalysis
KW - Solar light
KW - TiO
UR - http://www.scopus.com/inward/record.url?scp=84907485578&partnerID=8YFLogxK
U2 - 10.1016/j.molcata.2014.08.040
DO - 10.1016/j.molcata.2014.08.040
M3 - Article
AN - SCOPUS:84907485578
SN - 1381-1169
VL - 395
SP - 373
EP - 383
JO - Journal of Molecular Catalysis A: Chemical
JF - Journal of Molecular Catalysis A: Chemical
ER -