TY - JOUR
T1 - Photocatalytic properties of g-C3N4-TiO2 heterojunctions under UV and visible light conditions
AU - Fagan, Rachel
AU - McCormack, Declan E.
AU - Hinder, Steven J.
AU - Pillai, Suresh C.
N1 - Publisher Copyright:
© 2016 by the authors.
PY - 2016
Y1 - 2016
N2 - Graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) were chosen as a model system to investigate photocatalytic abilities of heterojunction system under UV and visible light conditions. The use of g-C3N4 has been shown to be effective in the reduction in recombination through the interaction between the two interfaces of TiO2 and g-C3N4. A simple method of preparing g-C3N4 through the pyrolysis of melamine was employed, which was then added to undoped TiO2 material to form the g-C3N4-TiO2 system. These materials were then fully characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), and various spectroscopic techniques including Raman, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), diffuse absorbance, and photoluminescence analysis. Photocatalysis studies were conducted using the model dye, rhodamine 6G utilizing visible and UV light irradiation. Raman spectroscopy confirmed that a composite of the materials was formed as opposed to a mixture of the two. Using XPS analysis, a shift in the nitrogen peak to that indicative of substitutional nitrogen was detected for all doped samples. This is then mirrored in the diffuse absorbance results, which show a clear decrease in band gap values for these samples, showing the effective band gap alteration achieved through this preparation process. When g-C3N4-TiO2 samples were analyzed under visible light irradiation, no significant improvement was observed compared that of pure TiO2. However, under UV light irradiation conditions, the photocatalytic ability of the doped samples exhibited an increased reactivity when compared to the undoped TiO2 (0.130 min-1), with 4% g-C3N4-TiO2 (0.187 min-1), showing a 43.9% increase in reactivity. Further doping to 8% g-C3N4-TiO2 lead to a decrease in reactivity against rhodamine 6G. BET analysis determined that the surface area of the 4% and 8% g-C3N4-TiO2 samples were very similar, with values of 29.4 and 28.5 m2/g, respectively, suggesting that the actual surface area is not a contributing factor. This could be due to an overloading of the system with covering of the active sites resulting in a lower reaction rate. XPS analysis showed that surface hydroxyl radicals and oxygen vacancies are not being formed throughout this preparation. Therefore, it can be suggested that the increased photocatalytic reaction rates are due to successful interfacial interactions with the g-C3N4-doped TiO2 systems.
AB - Graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) were chosen as a model system to investigate photocatalytic abilities of heterojunction system under UV and visible light conditions. The use of g-C3N4 has been shown to be effective in the reduction in recombination through the interaction between the two interfaces of TiO2 and g-C3N4. A simple method of preparing g-C3N4 through the pyrolysis of melamine was employed, which was then added to undoped TiO2 material to form the g-C3N4-TiO2 system. These materials were then fully characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), and various spectroscopic techniques including Raman, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), diffuse absorbance, and photoluminescence analysis. Photocatalysis studies were conducted using the model dye, rhodamine 6G utilizing visible and UV light irradiation. Raman spectroscopy confirmed that a composite of the materials was formed as opposed to a mixture of the two. Using XPS analysis, a shift in the nitrogen peak to that indicative of substitutional nitrogen was detected for all doped samples. This is then mirrored in the diffuse absorbance results, which show a clear decrease in band gap values for these samples, showing the effective band gap alteration achieved through this preparation process. When g-C3N4-TiO2 samples were analyzed under visible light irradiation, no significant improvement was observed compared that of pure TiO2. However, under UV light irradiation conditions, the photocatalytic ability of the doped samples exhibited an increased reactivity when compared to the undoped TiO2 (0.130 min-1), with 4% g-C3N4-TiO2 (0.187 min-1), showing a 43.9% increase in reactivity. Further doping to 8% g-C3N4-TiO2 lead to a decrease in reactivity against rhodamine 6G. BET analysis determined that the surface area of the 4% and 8% g-C3N4-TiO2 samples were very similar, with values of 29.4 and 28.5 m2/g, respectively, suggesting that the actual surface area is not a contributing factor. This could be due to an overloading of the system with covering of the active sites resulting in a lower reaction rate. XPS analysis showed that surface hydroxyl radicals and oxygen vacancies are not being formed throughout this preparation. Therefore, it can be suggested that the increased photocatalytic reaction rates are due to successful interfacial interactions with the g-C3N4-doped TiO2 systems.
KW - Graphitic carbon nitride
KW - Photocatalytic activity
KW - Titanium dioxide
UR - http://www.scopus.com/inward/record.url?scp=84965082363&partnerID=8YFLogxK
U2 - 10.3390/ma9040286
DO - 10.3390/ma9040286
M3 - Article
AN - SCOPUS:84965082363
SN - 1996-1944
VL - 9
JO - Materials
JF - Materials
IS - 4
M1 - 286
ER -