TY - JOUR
T1 - Polyclonal Immunoglobulin G N-Glycosylation in the Pathogenesis of Plasma Cell Disorders
AU - Mittermayr, Stefan
AU - Lê, Giao N.
AU - Clarke, Colin
AU - Millán Martín, Silvia
AU - Larkin, Anne Marie
AU - O'Gorman, Peter
AU - Bones, Jonathan
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2017/2/3
Y1 - 2017/2/3
N2 - The pathological progression from benign monoclonal gammopathy of undetermined significance (MGUS) to smoldering myeloma (SMM) and finally to active myeloma (MM) is poorly understood. Abnormal immunoglobulin G (IgG) glycosylation in myeloma has been reported. Using a glycomic platform composed of hydrophilic interaction UPLC, exoglycosidase digestions, weak anion-exchange chromatography, and mass spectrometry, polyclonal IgG N-glycosylation profiles from 35 patients [MGUS (n = 8), SMM (n = 5), MM (n = 8), complete-response (CR) post-treatment (n = 5), relapse (n = 4), healthy age-matched control (n = 5)] were characterized to map glycan structures in distinct disease phases of multiple myeloma. N-Glycan profiles from MGUS resembled normal control. The abundance of neutral glycans containing terminal galactose was highest in SMM, while agalactosylated glycans and fucosylated glycans were lowest in MM. Three afucosyl-biantennary-digalactosylated-sialylated species (A2G2S1, A2BG2S1, and A2BG2S2) decreased 2.38-, 2.4-, and 4.25-fold, respectively, from benign to active myeloma. Increased light chain sialylation was observed in a longitudinal case of transformation from MGUS to MM. Bisecting N-acetylglucosamine was lowest in the CR group, while highest in relapsed disease. Gene expression levels of FUT 8, ST6GAL1, B4GALT1, RECK, and BACH2 identified from publicly available GEP data supported the glycomic changes seen in MM compared to control. The observed differential glycosylation underlined the heterogeneity of the myeloma spectrum. This study demonstrates the feasibility of mapping glycan modifications on the IgG molecule and provides proof of principle that differential IgG glycosylation patterns can be successfully identified in plasma cell disorders.
AB - The pathological progression from benign monoclonal gammopathy of undetermined significance (MGUS) to smoldering myeloma (SMM) and finally to active myeloma (MM) is poorly understood. Abnormal immunoglobulin G (IgG) glycosylation in myeloma has been reported. Using a glycomic platform composed of hydrophilic interaction UPLC, exoglycosidase digestions, weak anion-exchange chromatography, and mass spectrometry, polyclonal IgG N-glycosylation profiles from 35 patients [MGUS (n = 8), SMM (n = 5), MM (n = 8), complete-response (CR) post-treatment (n = 5), relapse (n = 4), healthy age-matched control (n = 5)] were characterized to map glycan structures in distinct disease phases of multiple myeloma. N-Glycan profiles from MGUS resembled normal control. The abundance of neutral glycans containing terminal galactose was highest in SMM, while agalactosylated glycans and fucosylated glycans were lowest in MM. Three afucosyl-biantennary-digalactosylated-sialylated species (A2G2S1, A2BG2S1, and A2BG2S2) decreased 2.38-, 2.4-, and 4.25-fold, respectively, from benign to active myeloma. Increased light chain sialylation was observed in a longitudinal case of transformation from MGUS to MM. Bisecting N-acetylglucosamine was lowest in the CR group, while highest in relapsed disease. Gene expression levels of FUT 8, ST6GAL1, B4GALT1, RECK, and BACH2 identified from publicly available GEP data supported the glycomic changes seen in MM compared to control. The observed differential glycosylation underlined the heterogeneity of the myeloma spectrum. This study demonstrates the feasibility of mapping glycan modifications on the IgG molecule and provides proof of principle that differential IgG glycosylation patterns can be successfully identified in plasma cell disorders.
KW - IgG N-glycosylation
KW - glycan analysis
KW - multiple myeloma
KW - plasma cell disorders
KW - polyclonal IgG
UR - http://www.scopus.com/inward/record.url?scp=85011636327&partnerID=8YFLogxK
U2 - 10.1021/acs.jproteome.6b00768
DO - 10.1021/acs.jproteome.6b00768
M3 - Article
C2 - 27936757
AN - SCOPUS:85011636327
SN - 1535-3893
VL - 16
SP - 748
EP - 762
JO - Journal of Proteome Research
JF - Journal of Proteome Research
IS - 2
ER -