TY - JOUR
T1 - Solar photocatalysis for water disinfection
T2 - Materials and reactor design
AU - Keane, Donal A.
AU - McGuigan, Kevin G.
AU - Ibáñez, Pilar Fernández
AU - Polo-López, M. Inmaculada
AU - Byrne, J. Anthony
AU - Dunlop, Patrick S.M.
AU - O'Shea, Kevin
AU - Dionysiou, Dionysios D.
AU - Pillai, Suresh C.
PY - 2014/5
Y1 - 2014/5
N2 - As of 2010, access to clean drinking water is a human right according to UN regulations. Nevertheless, the number of people living in areas without safe drinking water is predicted to increase by three billion by the end of this decade. Several recent cases of E. coli and Cryptosporidium contamination in drinking water are also reported in a number of advanced countries. Therefore ensuring the potability of drinking water is urgent, but highly challenging to both the developing and developed world in the future. A combination of solar disinfection and photocatalysis technology offers real possibilities for removing lethal pathogenic microorganisms from drinking water. The time taken for the conventional SODIS process can be greatly reduced by semiconductor (e.g. TiO2, ZnO, nano-heterojunctions) based photocatalysis. This review addresses the fundamental reaction mechanism, advances in materials synthesis and selection and recent developments in the reactor design for solar energy driven photocatalysis using titanium dioxide. The major advantage of using photo-reactors is that they enhance disinfection by increasing photon flux into the photocatalyst. Other major factors affecting such efficiency of solar-based photocatalysis such as the illuminated volume/total volume ratio, catalyst load and flow rate, are discussed in detail. The significance of using immobilised catalysts over the catalyst powder in slurries is also highlighted. It is noted that, despite encouraging early field studies, the commercialisation and mass production of solar photocatalysis systems remains highly challenging. Recommendations for future directions for addressing issues such as mass transfer, requirement of a standard test method, photo-reactors design and visible light absorption by TiO2 coatings are also discussed.
AB - As of 2010, access to clean drinking water is a human right according to UN regulations. Nevertheless, the number of people living in areas without safe drinking water is predicted to increase by three billion by the end of this decade. Several recent cases of E. coli and Cryptosporidium contamination in drinking water are also reported in a number of advanced countries. Therefore ensuring the potability of drinking water is urgent, but highly challenging to both the developing and developed world in the future. A combination of solar disinfection and photocatalysis technology offers real possibilities for removing lethal pathogenic microorganisms from drinking water. The time taken for the conventional SODIS process can be greatly reduced by semiconductor (e.g. TiO2, ZnO, nano-heterojunctions) based photocatalysis. This review addresses the fundamental reaction mechanism, advances in materials synthesis and selection and recent developments in the reactor design for solar energy driven photocatalysis using titanium dioxide. The major advantage of using photo-reactors is that they enhance disinfection by increasing photon flux into the photocatalyst. Other major factors affecting such efficiency of solar-based photocatalysis such as the illuminated volume/total volume ratio, catalyst load and flow rate, are discussed in detail. The significance of using immobilised catalysts over the catalyst powder in slurries is also highlighted. It is noted that, despite encouraging early field studies, the commercialisation and mass production of solar photocatalysis systems remains highly challenging. Recommendations for future directions for addressing issues such as mass transfer, requirement of a standard test method, photo-reactors design and visible light absorption by TiO2 coatings are also discussed.
UR - http://www.scopus.com/inward/record.url?scp=84897991884&partnerID=8YFLogxK
U2 - 10.1039/c4cy00006d
DO - 10.1039/c4cy00006d
M3 - Review article
AN - SCOPUS:84897991884
SN - 2044-4753
VL - 4
SP - 1211
EP - 1226
JO - Catalysis Science and Technology
JF - Catalysis Science and Technology
IS - 5
ER -