TY - JOUR
T1 - Studies on adsorption of Brilliant Green from aqueous solution onto nutraceutical industrial pepper seed spent
AU - Sulthana, Razia
AU - Taqui, Syed Noeman
AU - Mir, Rayees Afzal
AU - Syed, Akheel Ahmed
AU - Mujtaba, M. A.
AU - Mulla, Mohammed Huzaifa
AU - Jathar, Laxmikant D.
AU - Rajamony, Reji Kumar
AU - Fouad, Yasser
AU - Shelare, Sagar
AU - Ali, Muhammad Mahmood
AU - Bashir, Muhammad Nasir
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/10
Y1 - 2024/10
N2 - The study proposed the removal of Brilliant Green, a cationic dye, by adsorption process from wastewater solution utilizing a low-cost adsorbent such as Nutraceutical Industrial Pepper Seed Spent (NIPSS). The study comprises an investigation of the parametric influence on the adsorption process. The parameters identified are pH, dye concentration, process temperature, quantity of the adsorbent, and particle size. The study of statistics found from experiments was carried out by incorporating Freundlich, Brouers-Sotolongo, Langmuir, Toth, Sips, Jovanovic, and Redlich-Peterson isotherm models. The adsorption kinetics were determined by implementing pseudo-first-order and second-order models, diffusion film models, and Dumwald-Wagner and Weber-Morris models. The experimental adsorption capacity qe was found to be about 130 mg/g. This value was closest to the maximum adsorption of 144.6mg/g predicted by the Brouers-Sotolongo isotherm which had a correlation coefficient (R2) of 0.998. The adsorption kinetics data was confirmed to be a pseudo-second-order model. The change in free energy, enthalpy change, and entropy change were vital thermodynamic factors in concluding that adsorption is almost spontaneous and endothermic process. Change in enthalpy (ΔH°) reduced value indicates the physical nature of the process. The adsorption of BG dye on the adsorbent surface was authenticated by FTIR spectroscopy and SEM imaging. A Central Composite Design (CCD) Quadratic model under Response Surface Methodology (RSM) was implemented for statistical optimization of adsorption capacity for the five parameters studied, namely, time, temperature, concentration of the dye, weight of the adsorbent, and pH. Software Design Expert 7.0 was used to evaluate 3D contour plots. The process of optimization yielded a value of 350 mg/g. Thus, incrementing the adsorption process by 84.2 %. The study provides insights on various dye and adsorbent interaction possibilities and derives that NIPSS is an efficient adsorbent to extract BG dye from wastewater solutions.
AB - The study proposed the removal of Brilliant Green, a cationic dye, by adsorption process from wastewater solution utilizing a low-cost adsorbent such as Nutraceutical Industrial Pepper Seed Spent (NIPSS). The study comprises an investigation of the parametric influence on the adsorption process. The parameters identified are pH, dye concentration, process temperature, quantity of the adsorbent, and particle size. The study of statistics found from experiments was carried out by incorporating Freundlich, Brouers-Sotolongo, Langmuir, Toth, Sips, Jovanovic, and Redlich-Peterson isotherm models. The adsorption kinetics were determined by implementing pseudo-first-order and second-order models, diffusion film models, and Dumwald-Wagner and Weber-Morris models. The experimental adsorption capacity qe was found to be about 130 mg/g. This value was closest to the maximum adsorption of 144.6mg/g predicted by the Brouers-Sotolongo isotherm which had a correlation coefficient (R2) of 0.998. The adsorption kinetics data was confirmed to be a pseudo-second-order model. The change in free energy, enthalpy change, and entropy change were vital thermodynamic factors in concluding that adsorption is almost spontaneous and endothermic process. Change in enthalpy (ΔH°) reduced value indicates the physical nature of the process. The adsorption of BG dye on the adsorbent surface was authenticated by FTIR spectroscopy and SEM imaging. A Central Composite Design (CCD) Quadratic model under Response Surface Methodology (RSM) was implemented for statistical optimization of adsorption capacity for the five parameters studied, namely, time, temperature, concentration of the dye, weight of the adsorbent, and pH. Software Design Expert 7.0 was used to evaluate 3D contour plots. The process of optimization yielded a value of 350 mg/g. Thus, incrementing the adsorption process by 84.2 %. The study provides insights on various dye and adsorbent interaction possibilities and derives that NIPSS is an efficient adsorbent to extract BG dye from wastewater solutions.
KW - Adsorption isotherm models
KW - Adsorption kinetics
KW - Brilliant Green
KW - Nutraceutical industrial pepper seed spent
KW - Valorisation
UR - http://www.scopus.com/inward/record.url?scp=85203551466&partnerID=8YFLogxK
U2 - 10.1016/j.arabjc.2024.105981
DO - 10.1016/j.arabjc.2024.105981
M3 - Article
AN - SCOPUS:85203551466
SN - 1878-5352
VL - 17
JO - Arabian Journal of Chemistry
JF - Arabian Journal of Chemistry
IS - 10
M1 - 105981
ER -