TY - JOUR
T1 - Sustainable sewage sludge biosorbent activated carbon for remediation of heavy metals
T2 - Optimization by response surface methodology
AU - Al-mahbashi, Najib Mohammed Yahya
AU - Kutty, S. R.M.
AU - Jagaba, A. H.
AU - Al-nini, Ahmed
AU - Sholagberu, Abdulkadir Taofeeq
AU - Aldhawi, Baker N.S.
AU - Rathnayake, Upaka
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/12
Y1 - 2023/12
N2 - This study investigated the potential use of sewage sludge-based activated carbon in the removal of copper (Cu) and cadmium (Cd) ions from aqueous solutions. The activated carbon (AC) was prepared by chemical activation using potassium hydroxide KOH and heating in a tube furnace at 600 °C for 2 h. The produced activated carbon was further subject to a sulfurization process to enhance its removal efficiency. The study used Box-Behnken Design (BBD) in response surface methodology (RSM) to optimize several parameters, including initial metal concentration, activated carbon dose, pH, and contact time. Results showed that the sulfurization process introduced sulfur functional groups (S[dbnd]O) to the surface of the activated carbon and decreased its specific area from 190 to 173 m2/g. The quadratic model was suggested as the best model to describe the effect of the adsorption parameters on the removal percentage with high R2 values (≥0.9) and p-value less than 0.05. Second-order polynomial equations, analysis of variance (ANOVA), and three-dimensional surface plots were developed to assess the interaction between the parameters and the optimal conditions to remove copper and cadmium ions. The optimum removal parameters for copper ions were 300 min, 100 ppm initial concentration, 20 g/L activated carbon dose, and pH 6, with a removal efficiency of 83.9%. Cadmium removal of 87.5% was achieved at 11 ppm, 300 minutes contact time, pH 6, and 2.5 g/L adsorbent dose. The activated carbon capacity in removing copper and cadmium was 16 mg/g and 17.6 mg/g respectively. The sulfurization process increased the removal percentage for copper and cadmium ions by 14.5 and 18.7% respectively. Advanced analytical techniques such as FITR, SEM-EDX, BET surface area, and elemental analysis were used to characterize the materials.
AB - This study investigated the potential use of sewage sludge-based activated carbon in the removal of copper (Cu) and cadmium (Cd) ions from aqueous solutions. The activated carbon (AC) was prepared by chemical activation using potassium hydroxide KOH and heating in a tube furnace at 600 °C for 2 h. The produced activated carbon was further subject to a sulfurization process to enhance its removal efficiency. The study used Box-Behnken Design (BBD) in response surface methodology (RSM) to optimize several parameters, including initial metal concentration, activated carbon dose, pH, and contact time. Results showed that the sulfurization process introduced sulfur functional groups (S[dbnd]O) to the surface of the activated carbon and decreased its specific area from 190 to 173 m2/g. The quadratic model was suggested as the best model to describe the effect of the adsorption parameters on the removal percentage with high R2 values (≥0.9) and p-value less than 0.05. Second-order polynomial equations, analysis of variance (ANOVA), and three-dimensional surface plots were developed to assess the interaction between the parameters and the optimal conditions to remove copper and cadmium ions. The optimum removal parameters for copper ions were 300 min, 100 ppm initial concentration, 20 g/L activated carbon dose, and pH 6, with a removal efficiency of 83.9%. Cadmium removal of 87.5% was achieved at 11 ppm, 300 minutes contact time, pH 6, and 2.5 g/L adsorbent dose. The activated carbon capacity in removing copper and cadmium was 16 mg/g and 17.6 mg/g respectively. The sulfurization process increased the removal percentage for copper and cadmium ions by 14.5 and 18.7% respectively. Advanced analytical techniques such as FITR, SEM-EDX, BET surface area, and elemental analysis were used to characterize the materials.
KW - Activated carbon
KW - Adsorption
KW - Box-Behnken design
KW - Heavy metals removal
KW - Sewage sludge
KW - Surface modification
UR - http://www.scopus.com/inward/record.url?scp=85166189015&partnerID=8YFLogxK
U2 - 10.1016/j.cscee.2023.100437
DO - 10.1016/j.cscee.2023.100437
M3 - Article
AN - SCOPUS:85166189015
SN - 2666-0164
VL - 8
JO - Case Studies in Chemical and Environmental Engineering
JF - Case Studies in Chemical and Environmental Engineering
M1 - 100437
ER -