TY - JOUR
T1 - Theoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides
AU - Syam Kumar, R.
AU - Akande, Akinlolu
AU - El-Mellouhi, Fedwa
AU - Park, Heesoo
AU - Sanvito, Stefano
N1 - Publisher Copyright:
© 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
PY - 2020/7
Y1 - 2020/7
N2 - The past decade has witnessed the rapid introduction of organic-inorganic hybrid compounds in photovoltaic applications. Motivated by the strong demand for stable and nontoxic materials in this class, we report a theoretical study on the structural, elastic, electronic, thermodynamic and dielectric properties of alkali-metal-based bismuth ternary chalcogenides. In particular, we employ state-of-the-art density functional theory to explore the potential of ABiX2 and ABiX3 (A=Na, K and X= O, S) as light-absorbing media. All the compounds under investigation are found to be thermodynamically and mechanically stable, with a semiconductor band structure. The Kohn-Sham band gaps range between 0.80 eV and 1.80 eV, when calculated with semilocal functionals, values that increase to 1.24-2.47 eV with hybrid ones. Although all but NaBiO2 and KBiO2 are indirect band-gap semiconductors, the onset of the imaginary part of their dielectric functions, the optical gap, is only marginally larger than the quasiparticle gap. This is due to the generally flat nature of both the conduction and the valence bands. We then expect these compounds to absorb light in the upper part of the visible spectrum. In all cases the valence band is dominated by O-p and S-p orbitals and the conduction one by Bi-p, suggesting the possibility of excitons with low binding energy. The only exceptions are NaBiO2 and KBiO2 for which the O-p states dominate the density of states at both sides of the band gap.
AB - The past decade has witnessed the rapid introduction of organic-inorganic hybrid compounds in photovoltaic applications. Motivated by the strong demand for stable and nontoxic materials in this class, we report a theoretical study on the structural, elastic, electronic, thermodynamic and dielectric properties of alkali-metal-based bismuth ternary chalcogenides. In particular, we employ state-of-the-art density functional theory to explore the potential of ABiX2 and ABiX3 (A=Na, K and X= O, S) as light-absorbing media. All the compounds under investigation are found to be thermodynamically and mechanically stable, with a semiconductor band structure. The Kohn-Sham band gaps range between 0.80 eV and 1.80 eV, when calculated with semilocal functionals, values that increase to 1.24-2.47 eV with hybrid ones. Although all but NaBiO2 and KBiO2 are indirect band-gap semiconductors, the onset of the imaginary part of their dielectric functions, the optical gap, is only marginally larger than the quasiparticle gap. This is due to the generally flat nature of both the conduction and the valence bands. We then expect these compounds to absorb light in the upper part of the visible spectrum. In all cases the valence band is dominated by O-p and S-p orbitals and the conduction one by Bi-p, suggesting the possibility of excitons with low binding energy. The only exceptions are NaBiO2 and KBiO2 for which the O-p states dominate the density of states at both sides of the band gap.
UR - http://www.scopus.com/inward/record.url?scp=85092496037&partnerID=8YFLogxK
U2 - 10.1103/PhysRevMaterials.4.075401
DO - 10.1103/PhysRevMaterials.4.075401
M3 - Article
AN - SCOPUS:85092496037
SN - 2475-9953
VL - 4
JO - Physical Review Materials
JF - Physical Review Materials
IS - 7
M1 - 075401
ER -