TY - JOUR
T1 - Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey
AU - Patton, Thomas
AU - Barrett, John
AU - Brennan, James
AU - Moran, Noel
PY - 2006/1
Y1 - 2006/1
N2 - The antimicrobial activity of manuka honey has been well documented (Molan, 1992a,b,c, 1997) [Molan, P.C., 1992. The antibacterial activity of honey. 1: the nature of the antibacterial activity. Bee World 73 (1) 5-28; Molan, P.C., 1992. The antibacterial activity of honey. 2: variation in the potency of the antibacterial activity. Bee World 73 (2) 59-76; Molan, P.C., 1992. Medicinal uses for honey. Beekeepers Quarterly 26; Molan, P.C., 1997. Finding New Zealand honeys with outstanding antibacterial and antifungal activity. New Zealand Beekeeper 4 (10) 20-26]. The current bioassays for determining this antimicrobial effect employ a well diffusion (Ahn and Stiles, 1990) [Ahn, C., Stiles, M.E., 1990. Antibacterial activity of lactic acid bacteria isolated from vacuum-packed meats. Journal of Applied Bacteriology 69, 302-310], (Weston et al., 1999) [Weston, R.J., Mitchell, K.R., Allen, K.L., 1999. Antibacterial phenolic components of New Zealand manuka honey. J. Food Chem. 64, 295-301] or disc diffusion (Taormina et al., 2001) [Taormina, Peter J., Niemira, Brendan A., Beuchat, Larry R., 2001. Inhibitory activity of honey against food borne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int. J. Food Microbiol. 69, 217-225] assay using zones of inhibition as indicators of bacterial susceptibility. The development of a 24-h spectrophotometric assay employing 96-well microtiter plates, that is more sensitive and more amenable to statistical analysis than the assays currently employed, was undertaken. This simple and rapid assay permits extensive kinetic studies even in the presence of low honey concentrations, and is capable of detecting inhibitory levels below those recorded for well or disc diffusion assays. In this paper, we compare the assay to both well and disc diffusion assays. The results we obtained for the spectrophotometric method MIC values show that this method has greater sensitivity than the standard well and disc diffusion assays. In addition, inter- and intra-assay variance for this method was investigated, demonstrating the methods reproducibility and repeatability.
AB - The antimicrobial activity of manuka honey has been well documented (Molan, 1992a,b,c, 1997) [Molan, P.C., 1992. The antibacterial activity of honey. 1: the nature of the antibacterial activity. Bee World 73 (1) 5-28; Molan, P.C., 1992. The antibacterial activity of honey. 2: variation in the potency of the antibacterial activity. Bee World 73 (2) 59-76; Molan, P.C., 1992. Medicinal uses for honey. Beekeepers Quarterly 26; Molan, P.C., 1997. Finding New Zealand honeys with outstanding antibacterial and antifungal activity. New Zealand Beekeeper 4 (10) 20-26]. The current bioassays for determining this antimicrobial effect employ a well diffusion (Ahn and Stiles, 1990) [Ahn, C., Stiles, M.E., 1990. Antibacterial activity of lactic acid bacteria isolated from vacuum-packed meats. Journal of Applied Bacteriology 69, 302-310], (Weston et al., 1999) [Weston, R.J., Mitchell, K.R., Allen, K.L., 1999. Antibacterial phenolic components of New Zealand manuka honey. J. Food Chem. 64, 295-301] or disc diffusion (Taormina et al., 2001) [Taormina, Peter J., Niemira, Brendan A., Beuchat, Larry R., 2001. Inhibitory activity of honey against food borne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int. J. Food Microbiol. 69, 217-225] assay using zones of inhibition as indicators of bacterial susceptibility. The development of a 24-h spectrophotometric assay employing 96-well microtiter plates, that is more sensitive and more amenable to statistical analysis than the assays currently employed, was undertaken. This simple and rapid assay permits extensive kinetic studies even in the presence of low honey concentrations, and is capable of detecting inhibitory levels below those recorded for well or disc diffusion assays. In this paper, we compare the assay to both well and disc diffusion assays. The results we obtained for the spectrophotometric method MIC values show that this method has greater sensitivity than the standard well and disc diffusion assays. In addition, inter- and intra-assay variance for this method was investigated, demonstrating the methods reproducibility and repeatability.
KW - % Inhibition
KW - Disc diffusion
KW - Manuka honey
KW - Microtiter
KW - Spectrophotometric
UR - http://www.scopus.com/inward/record.url?scp=29044441588&partnerID=8YFLogxK
U2 - 10.1016/j.mimet.2005.04.007
DO - 10.1016/j.mimet.2005.04.007
M3 - Article
C2 - 15979745
AN - SCOPUS:29044441588
SN - 0167-7012
VL - 64
SP - 84
EP - 95
JO - Journal of Microbiological Methods
JF - Journal of Microbiological Methods
IS - 1
ER -